
Statistical Learning Based on
High Dimensional Data

M. Stat. Dissertation

by

Shirshendu Chatterjee

(Roll No. MB0414)

Under the supervision of

Prof. Probal Chaudhuri

&

Prof. Debasis Sengupta

Submitted on July 28, 2006

Indian Statistical Institute
203 Barrackpore trunk Road

Kolkata 700108





Contents

1 Introduction 2
1.1 The Classification Problem . . . . . . . . . . . . . . . . . . . . 2
1.2 The Clustering Problem . . . . . . . . . . . . . . . . . . . . . 3
1.3 Problems Arising from High Dimensionality of Data . . . . . . 4

1.3.1 Classification Problems . . . . . . . . . . . . . . . . . . 4
1.3.2 Clustering Problems . . . . . . . . . . . . . . . . . . . 5

1.4 Available Approaches for Classifying High Dimensional Data . 5
1.4.1 More Accurate Estimation of Eigenvalue . . . . . . . . 6
1.4.2 Variable Selection and Dimension Reduction . . . . . . 6
1.4.3 Regularization Techniques . . . . . . . . . . . . . . . . 7

1.5 Available Approaches for Clustering High Dimensional Data . 10

2 Preliminary Study of Some Classification Rules 11
2.1 Variable Selection Approach . . . . . . . . . . . . . . . . . . . 11
2.2 Regularization Approach . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Shrinkage Towards Multiple of Identity Matrix . . . . . 12
2.2.2 Shrinkage Towards Diagonal Matrix . . . . . . . . . . . 12
2.2.3 Shrinkage Towards Intra-class Correlation Matrix . . . 13

2.3 Regularization with Aggregation . . . . . . . . . . . . . . . . . 15
2.4 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 For Variable Selection . . . . . . . . . . . . . . . . . . 15
2.4.2 For Regularization . . . . . . . . . . . . . . . . . . . . 18

2.5 Discussion of Simulation Results on Regularization . . . . . . 26

3 Effects of Mean and Covariance Estimation 29
3.1 Comparison Between the Two Effects . . . . . . . . . . . . . . 29
3.2 Effect of Estimation of Σ in Classification Problems . . . . . . 41

3.2.1 Nonsingular Σ̂ . . . . . . . . . . . . . . . . . . . . . . 41
3.2.2 Some special Cases . . . . . . . . . . . . . . . . . . . . 43
3.2.3 Singular Σ̂ . . . . . . . . . . . . . . . . . . . . . . . . . 45

1



4 A New Method of Regularization 47
4.1 Optimal Linear Combination of Two Σ−1-estimates . . . . . . 47
4.2 Optimal Convex Combination of Two Σ−1-estimates . . . . . 49
4.3 Illustrations Favoring Shrinkage Methods . . . . . . . . . . . . 52

4.3.1 Shrinkage Towards Diagonal Matrix . . . . . . . . . . . 52
4.3.2 Shrinkage Towards An Intra-class Correlation Matrix . 54

5 Optimization of Variables for Clustering 56
5.1 Difficulty of Clustering in Presence of Noisy Variables . . . . . 57
5.2 Choosing Best Discriminating Linear Combinations of Variables 57

5.2.1 Model Assumption . . . . . . . . . . . . . . . . . . . . 58
5.2.2 Criterion Function . . . . . . . . . . . . . . . . . . . . 58
5.2.3 Procedure for Choosing Lopt . . . . . . . . . . . . . . . 61

5.3 Number of Linear Combinations to Choose . . . . . . . . . . . 64
5.3.1 Criterion for Choosing . . . . . . . . . . . . . . . . . . 65
5.3.2 Ill Effects of Nondiscriminating Variables . . . . . . . . 67
5.3.3 Threshold for Inclusion of a Variable . . . . . . . . . . 74
5.3.4 Procedure for Selecting the Optimal Subset . . . . . . 75

5.4 Selection of Number of variables for Different Linkages . . . . 76
5.4.1 Criterion Function . . . . . . . . . . . . . . . . . . . . 76
5.4.2 Simulation Plan . . . . . . . . . . . . . . . . . . . . . . 77
5.4.3 Results and Discussion . . . . . . . . . . . . . . . . . . 78

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Clustering with or without Training Data 83
6.1 Clustering with No Training Data . . . . . . . . . . . . . . . . 83
6.2 An Example: Clustering of DNA Sequences . . . . . . . . . . 87

6.2.1 Data Description . . . . . . . . . . . . . . . . . . . . . 87
6.2.2 Methodology Used . . . . . . . . . . . . . . . . . . . . 87
6.2.3 Results and Discussion . . . . . . . . . . . . . . . . . . 87

6.3 Clustering with Training Data . . . . . . . . . . . . . . . . . . 89
6.3.1 Low Rank Approximation . . . . . . . . . . . . . . . . 89
6.3.2 Shrinkage Towards Diagonal Matrix . . . . . . . . . . . 90
6.3.3 Regularizing Moore-Penrose G-Inverse of Ŵ . . . . . . 90
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Chapter 1

Introduction

1.1 The Classification Problem

The goal of classification problems is to assign objects to one of several (K)
clearly identified classes based on a set of measurements X = (X1, X2, . . . , Xp)

T .
This can be viewed as a statistical decision problems in which we need to
partition the sample-space Rp into K disjoint parts corresponding to different

classes. If fk(X) denotes the class density for the kth class for k = 1, 2, . . . , K,
and if we consider 0-1 loss (i.e. no loss for correct classification and one unit
loss for each misclassification), the optimum partition (w.r.t. Bayes risk)

allocates X to the ith class if the corresponding posterior probability is max-
imum, or equivalently πifi(X) is maximum, i.e., if

πifi(X) = max
1≤k≤K

πkfk(X), (1.1.1)

where πk is the prior probability of the kth class.

If we consider normal model, (1.1.1) boils down to minimizing the discrimi-
nant score

dk(X) = (X− µµk)
TΣ−1

k (X− µµk) + ln |Σk| − 2 ln πk (1.1.2)

w.r.t. k. But in practice fk(.)’s are seldom known. So we need to estimate
the fk(.)’s (in the case of normal model the µµks and the Σks) based on a set

of training sample (with Nk items from the kth class) and then construct a
classification rule using the estimated densities. Let the training samples be

Xij = (Xij1, Xij2, . . . , Xijp)
T (jth sample from ith class); 1 ≤ i ≤ K, 1 ≤

j ≤ Ni. In QDA, the population parameters are generally estimated by the
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corresponding classical unbiased estimators

µ̂µk = Xk =
1

Nk

Nk∑
j=1

Xkj and (1.1.3)

Σ̂k =
1

Nk − 1

Nk∑
j=1

(Xkj −Xk)(Xkj −Xk)
T , (1.1.4)

and the kth discriminant scores of a future observation Xare estimated by
plugging in these estimates of µµk and Σk in the expression 1.1.2, i.e.

d̂k(X) = (X− µ̂µk)
T Σ̂−1

k (X− µ̂µk) + ln |Σ̂k| − 2 ln πk. (1.1.5)

In LDA, the same thing is done under the assumption that Σk = Σ∀k
and the common covariance matrix is estimated by

Σ̂ =
1

N −K

K∑

k=1

Nk∑
j=1

(Xkj −Xk)(Xkj −Xk)
T . (1.1.6)

So, in this case d̂k(X) is obtained by replacing Σ̂k in (1.1.5) by Σ̂.

1.2 The Clustering Problem

The goal of clustering problems is to partition a set of objects in homoge-
neous groups based on a set of measurements X = (X1,X2, . . . ,Xp)

T . Unlike
the classification problem, the groups or classes are not identified beforehand,
i.e. we need to identify the group structures present in the given set of obser-
vations. Clustering may have to be done with or without the help of training
data. In the first case, from the training samples we can have the knowledge
of homogeneous groups, and also, some idea about the between-group and
within-group variations. On the basis of that, we need to discover the ho-
mogeneous groups in a different collection of objects, which may be called
the test set. Possibly there may be many more homogeneous clusters in the
test set, which are not present in the training sample, and the clustering
procedure should be able to cope with that. In the absence of training data,
we don’t have any prior knowledge about the homogeneous groups.
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1.3 Problems Arising from High Dimension-

ality of Data

Both classification and clustering encounter some serious problems, in the
case of high dimensional data.

1.3.1 Classification Problems

For classification problems, QDA and LDA perform well if good estimates
of µµk and Σk ( Σ for LDA) are available. But if the dimension p of the
measurement vector is quite large compared to the class sample sizes Nks,
these estimates in (1.1.4) remain no longer reliable. Many of the parameters
of the covariance matrices may become unidentifiable. Even if all of them
are estimable, the estimates become highly unstable. Thus, we can estimate
the discriminant scores only with a very high variance, which leads to high
misclassification rates.
This problems may be better understood, if spectral decomposition of the
covariance matrices are considered. Let

Σk = VkΛkV
T
k =

p∑
i=1

λi,kvi,kv
T
i,k (1.3.1)

be the spectral decomposition of Σk where λi,k, 1 ≤ i ≤ p, are the eigenvalues
of Σk (in descending order) with corresponding eigenvectors vi,k. So,

Σ−1
k =

p∑
i=1

1

λi,k

vi,kv
T
i,k. (1.3.2)

Hence,

dk(X) =

p∑
i=1

[vT
i,k(X− µµk)]

2

λi,k

. (1.3.3)

Clearly, dk(X) is heavily weighted by the small eigenvalues of Σk. When
dk(X) is estimated as above, then vi,k and λi,k are estimated by the corre-

sponding eigenvalues and eigenvectors of the Σ̂k, i.e.,

d̂k(X) =

p∑
i=1

[v̂T
i,k(X− µ̂µk)]

2

γ̂i,k

. (1.3.4)
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Now, when Nk is comparable to p, the small eigenvalues of Σk are underes-
timated and the corresponding estimates become highly unstable, as men-
tioned in Friedman [8]. In the extreme case, when Nk < p the last p − Nk

of the γ̂i,k ’s are 0, so QDA is no longer useful. As a consequence, the direc-
tion associated with a small λi,k gets over-importance, which increases the

variance of d̂k(X). Thus the misclassification rates get enhanced.

1.3.2 Clustering Problems

If the dimension p of the measurement vector is substantially large compared
to the number of the objects N to be partitioned, clustering with or without
training data may become difficult. In most of the high dimensional clus-
tering problems, the true cluster structure remains confined to much lower
dimensional subspaces. Inclusion of too many noisy variables, which are less
relevant in clustering, may hinder the recovery of the actual homogeneous
groups present in the clusters. For example, if hierarchical clustering algo-
rithm is used in case of high dimensional data, different homogeneous groups
may become unidentifiable, unless the groups are very far away from each
other in terms of their Mahalanobis distances. A simulation study regarding
this fact is discussed in Chapter 5. In the case of model based clustering
also, if the dimension is very large, the estimate of within-group variation
and between-group variation which we get, is highly unstable and unreliable.
Naturally, partitioning the objects based on these estimates leads to high
misclassification rates. The details are discussed in Chapter 6.

1.4 Available Approaches for Classifying High

Dimensional Data

To cope with the difficulties in using QDA for those problems, where the
number of observations is either marginally more or less than the number
of unknown parameters (poorly-posed or ill-posed problems, respectively),
there are some techniques available in the literature. Broadly two kinds of
approaches can be adopted for these problems. One approach tries to obtain
reliable and more stable estimates of the parameters without changing the
model, and the other approach imposes restrictions on the model to reduce
the number of unknown parameters. In some situations, the second approach
is more useful compared to the first one.
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Bickel and Levina [4], have shown that, in the case of the classification prob-
lems, in which the dimension p is quite large compared to the sample sizes,
rules which use evidently incorrect assumption that the variables are inde-
pendent, often perform better than rules which try to capture dependence
structure in the construction of the classifier (detail clarification in section
2.4). This gives a motivation to go for restrictive models. In the following
subsections, some methods involving both the approaches are mentioned.

1.4.1 More Accurate Estimation of Eigenvalue

One possible way to deal with the problem due to high dimensionality is to
estimate the eigenvalues of the covariance matrices more accurately, reducing
the bias involved in the classical estimates. James and Stein [13], Effron and
Morris [6], Lin and Perlman [14], and Dey and Srinivasan [5] tried to get
estimates of the eigenvalues by minimizing certain loss functions. But none
of these loss functions are constructed to minimize the misclassification risk
of a classification problems. Also, Σ̂k is required to be nonsingular in almost
all of these approaches.

1.4.2 Variable Selection and Dimension Reduction

Another possible way to cope with high dimensional data is variable selec-
tion, as described in Schaafsma [16]. In this approach, one tries to choose
judiciously a smaller subset of variables, which have stronger discriminat-
ing power, discarding the less relevant ones, which cannot distinguish the
populations well. Generally, the optimal subset of variables for a particu-
lar subset size is obtained by minimizing the misclassification rates over all
possible subsets of that size. Then the optimal subsets of different sizes are
compared on the basis of their misclassification rates, to determine the most
optimal one. If the variables can be ordered according to their importance
in classification, the optimal subsets can be found more easily because in
that case the first few variables (of the ordered set) will be optimal subset of
the corresponding subset size. Alternatively, dimension reduction techniques
(using linear combination of the variables or other similar methods) may also
be considered. In this context, principal components are often used to reduce
the dimension. Since a natural ordering exists among the principal compo-
nents, it is required to find out only the number of components to be used
in a particular problems. Generally, in the situations where the variables
are ordered, the misclassification rate decreases with the increase of size of
the ordered subset. So, one tries to get the smallest subset such that the
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corresponding misclassification probability is not substantially different from
that of the full set of variables. This choice is subjective .

1.4.3 Regularization Techniques

Regularization techniques are very useful and popular in the situation of
high dimensional classification problems. A regularization technique typi-
cally consists of shrinking an estimated covariance matrix towards a matrix
of specified form.[12] In the following subsections some important regulariza-
tion techniques are discussed.

Regularized Discriminant Analysis (RDA)

Friedman [8] proposed some regularization method called Regularized Dis-
criminant Analysis (RDA). RDA tries to improve the classical estimates of
the class covariance matrices by reducing their variance at the cost of bias-
ing them away from the sample based estimates towards a more plausible
set of values. The increase in bias mainly depends on how close the actual
population covariance matrices and the plausible set of values are. If the
plausible set closely approximates the actual parameters, substantial reduc-
tion in variance can be achieved at the expense of a small increase in bias.
This bias-variance trade-off is controlled by two regularization parameters γ
and γ (0 ≤ γ, γ ≤ 1). The complexity parameter γ controls the regularization
of Σk towards the pooled covariance matrix Σ.

Σk(γ) =
(1− γ)Sk + γS

(1− γ)Nk + γN
, (1.4.1)

where Sk = NkΣ̂k, N =
∑K

i=1 Nk and S =
∑K

i=1 Sk. The other parameter γ
is used to further regularize the class covariance matrices and controls their
shrinkage towards a suitable multiple of the identity matrix.

Σ̂k(γ, γ) = (1− γ)Σ̂k(γ) + γ

[
trace{Σ̂k(γ)}

p

]
I. (1.4.2)

The shrinkage towards a multiple of the identity matrix helps to counter-
act the bias involved in estimating the eigenvalues. Thus RDA suggests an
intermediate classifier among 4 classification rules corresponding to QDA
(γ = 0, γ = 0), LDA (γ = 1, γ = 0), classifiers based on a model with
Σk = σ2

kI (γ = 0, γ = 1) and a model with Σk = σ2I (γ = 1, γ = 1),
respectively. Sample based estimates of these parameters are obtained by
minimizing the misclassification risk which is obtained using cross-validation
method.
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Eigenvalue Decomposition Discriminant Analysis (EDDA)

In another regularization approach, called Eigenvalue Decomposition Dis-
criminant Analysis (EDDA) Bensmail and Celeux [2] considered reparametriza-
tion of the covariance matrices with respect to eigenvalue decomposition. If
Λk is written as

Λk = αkAk, (1.4.3)

where Λk is as in (1.3.1) and αk = (
∏p

i=1 λi,k)
1
p , then

Σk = αkVkAkV
T
k . (1.4.4)

Here Ak is a diagonal matrix consisting of standardized eigenvalues of Σk,
and αk, Vk and Ak represent respectively the volume, the orientation and
the shape of the kth population density. For various constraints on these
parameters, e.g., varying some but not all the parameters across the popula-
tion, different discrimination models were obtained (this includes LDA and
QDA as special cases). After estimating the parameters by the corresponding
m.l.e., the model which leads to the least future misclassification risk, was
chosen to form the classification rule.

High Dimensional Discriminant Analysis (HDDA)

There is another approach called High Dimensional Discriminant Analysis
(HDDA) [Bouveyron, Girard, Schmid, 2005], which is based on the assump-
tion that high dimensional data lives in different low dimensional subspaces.
In this approach, the dimension of different classes are reduced independently
and then the class covariance matrices are regularized to adopt the Gaussian
framework. Here regularization is based on the assumption that the classes
have spherical eigen-spaces.

Some Theoretical Results Favoring Regularization

Bickel and Levina [4] have shown theoretically that in the case of high di-
mensional classification problems with two Gaussian populations having same
covariance matrix and different mean vectors, based on a sample of size n
from each population, the rules which assume the variables to be indepen-
dent, perform much better than those based on covariance matrix that tries
to capture the correlation among variables, under certain broad conditions
namely p

n
→ ∞ and log(p)

n
→ 0 as n → ∞ and eigenvalues of Σ do not con-

verge to 0 or ∞ as p → ∞. This includes the case when p =O
(
nδ

) ∀δ > 1.
Since in the asymptotic analysis p also tends to ∞ along with n, the mean
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vectors µµ1, µµ2 can be made elements of the space l2 by adding 0s at the end.
In the standard LDA, Σ−1 is replaced by Σ+ (the Moore-Penrose G-inverse
of Σ) whenever n > p. The parameter space, which was considered is

Γ(c, k1, k2, B) = {(µµ1, µµ2,Σ) : ∆ ≥ c2; k1 ≤ λmin(Σ) ≤ λmax(Σ) ≤ k2; µµ ∈ B},
(1.4.5)

where c, k1 and k2 are some positive numbers, ∆ is the Mahalanobis distance
between the two populations, and B is a compact subset of the space l2 of
the form

B = Ba,d =

{
µµ = (µµ1, µµ2, . . .) :

∞∑
j=1

ajµµ
2
j ≤ d

}
. (1.4.6)

The form of the parameters ensures that none of Σ and Σ−1 is ill-conditioned
and c represents the difficulty level of the problems. Clearly, the Bayes Risk
of this problems is Φ(c/2), where Φ(.) = 1 − Φ(.) and Φ(.) is the cdf of
standard normal distribution.
Let D be the diagonal matrix with the same diagonal elements as Σ. If X
is a future observation from N(µµ1,Σ), and MLDA(θ) and MI(θ) represent
the (unconditional) probabilities of misclassifying X corresponding to the
standard LDA and the independent rule respectively, i.e.,

MLDA(θ) = Pθ

[(
X− µ̂µ1 + µ̂µ2

2

)T

Σ̂−1(µ̂µ1 − µ̂µ2) < 0

]
(1.4.7)

MI(θ) = Pθ

[(
X− µ̂µ1 + µ̂µ2

2

)T

D̂−1(µ̂µ1 − µ̂µ2) < 0

]
(1.4.8)

and MLDA,Γ, MI,Γ represent corresponding worst performance, i.e.,

MLDA,Γ = max
Γ

MLDA(θ) (1.4.9)

MI,Γ = max
Γ

MI(θ), (1.4.10)

then it has been proved that

p

n
→∞⇒ MLDA,Γ → 1

2
, (1.4.11)

log(p)

n
→ 0 ⇒ lim sup

n→∞
MI,Γ = Φ

( √
k0

1 + k0

c

)
, (1.4.12)
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where

k0 = max
Γ

λmax(Σ0)

λmin(Σ0)
(1.4.13)

with Σ0 = D− 1
2ΣD− 1

2 as the correlation matrix corresponding to Σ. This
result suggests that if the eigenvalues of Σ do not converge to 0 nor do they
diverge to ∞ as p → ∞, i.e., k0 is finite; then the worst performance of
the “independent rule” is a decreasing function of the Mahalanobis distance,
while the standard LDA is no better than random guessing irrespective of
the value of the Mahalanobis distance between the two populations.
The results also suggest that, under the assumptions on n and p, all variables
can be used for classification ignoring the correlations. This gives a motiva-
tion to go for shrinkage towards a diagonal matrix because in that approach,
the “independent rule” is included as a special case for a specific value of the
shrinkage parameter. This approach will be discussed in the next chapter.

1.5 Available Approaches for Clustering High

Dimensional Data

In the context of high dimensional clustering problems, a common variable
selection method involves fitting univariate models to each component and
choosing those which satisfy some threshold criteria. This was proposed by
McLachlan et al. [15]. But this method does not take into account the joint
effect of the variables. So, the variables, which help in clustering in pres-
ence of others, but individually are not potentially important, are ignored.
Another standard dimension reduction technique is to use leading principal
components and then find the clusters using any standard procedure, as de-
scribed in [11]. In these two approaches, the variable selection and clustering
are done separately. There are some methods in which these two tasks are
done simultaneously. For example, forward selection methods can be used
in the case of hierarchical algorithms. This was proposed by Fowlkes et
al. [7]. In this approach, variables are included based on the information
about between-cluster and total sum of squares. The significance of the vari-
ables was judged on the basis of graphical information. In another approach,
proposed by Mahlet et al. [18], the clustering problems was formulated in
terms of a multivariate mixture model with an unknown number of compo-
nents. Then MCMC techniques were used to infer about the selection of
discriminating variables, estimates for the number of clusters and the sample
allocations.
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Chapter 2

Preliminary Study of Some
Classification Rules

Initially, two variable selection methods and some regularization techniques
were considered. These are discussed in the next two sections.

2.1 Variable Selection Approach

In both the variable selection methods, the performance of a subset of vari-
ables (for classification) was measured by means of two estimates of the ratio
of mean squared neighbor distance and mean squared non-neighbor distance.
Here, the mean neighbor distance is the expected Euclidian distance within
the same population, and the mean non-neighbor distance is the expected
Euclidean distance between two populations. These two estimates are (1)
average of ratios (R1) and (2) ratio of averages (R2) as given below.

R1 =
1

N

K∑
i=1

Ni∑
j=1

R1,i,j, (2.1.1)

where,

R1,i,j =

∑Ni

j
′
=1j

′ 6=j

∥∥Xi,j −Xi,j′
∥∥2

∑K
i
′
=1,i

′ 6=i

∑N
i
′

j′=1

∥∥Xi,j −Xi
′
,j
′
∥∥2

, (2.1.2)

and

R2 =
(
∑

i Ni(Ni − 1))−1 ∑
i,j,j

′
;j 6=j

′
∥∥Xi,j −Xi,j

′
∥∥2

(
∑

i Ni(N −Ni))
−1 ∑

i,i
′
,j,j

′
;i6=i

′
∥∥Xi,j −Xi

′
,j
′
∥∥2 . (2.1.3)
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In the first variable selection method, optimal subsets of variables of different
sizes (starting from 1 and going up to p) were obtained using the above cri-
terion and using forward selection method. Different subsets were compared
on the basis of the two ratio estimates.
In the second method of variable selection, first the variables were sorted in
ascending order of ratio estimates. Then the subset of variables consisting
of first d variables were considered, 1 ≤ d ≤ p, as the optimal d-dimensional
subset. Then, using LDA, corresponding misclassification rates were com-
pared.

2.2 Regularization Approach

In this section, we discuss some regularization techniques. For the time being,
we assume that K = 2 and Σ1 = Σ2.

2.2.1 Shrinkage Towards Multiple of Identity Matrix

Under the above assumption, a special case of RDA was considered. It uses
shrinkage of the common covariance matrix towards a multiple of the identity
matrix, where the multiple is p−1trace(Σ̂), which is also the MLE of σ2 under
the model Σk = σ2I ∀ k, where Σ̂ is given by (1.1.6). This shrinkage tries to
pull all the eigenvalues towards their average, and thereby try to cope with
the underestimation of the small eigenvalues of Σ.

2.2.2 Shrinkage Towards Diagonal Matrix

In our work, along with the above method, we have also considered two
more shrinkage methods. In one of the methods, as motivated at the end of
section 1.4.3, we try to regularize the common covariance matrix by shrinking
it towards a suitable diagonal matrix. The amount of shrinkage is controlled
by a parameter γ. The diagonal matrix is taken to be the MLE of Σ under
the assumption that Σ is diagonal. This MLE is given by D̂ =DIAG(Σ̂),
i.e., a diagonal matrix having the same diagonal entries as of Σ̂. So, the
regularization is given by

Σ̂D(γ) = (1− γ)Σ̂ + γD̂ (2.2.1)

This method actually keeps the variance estimates of the variables unchanged
and reduces the covariance estimates uniformly. This method also tries to
resolve the eigenvalue distortion problem as shown below. For the smallest
eigenvalue of Σ̂D(γ) we have

13



λmin(Σ̂D(γ)) = inf
‖x‖=1

xT Σ̂D(γ)x = inf
‖x‖=1

[
(1− γ)xT Σ̂x + γxT D̂x

]

≥ (1− γ) inf
‖x‖=1

xT Σ̂x + γ inf
‖x‖=1

xtD̂x ≥ inf
‖x‖=1

xT Σ̂x = λmin(Σ̂). (2.2.2)

Similarly, it reduces the maximum eigenvalue. If the variables are indeed
independent, the bias introduced due to regularization will be quite small,
while great reduction in variance of the discriminant scores can be achieved.

2.2.3 Shrinkage Towards Intra-class Correlation Ma-
trix

In the other method, shrinkage towards a suitable intraclass correlation ma-
trix (which is the MLE of Σ under the assumption that all diagonal entries
of Σ are σ2 and all off-diagonal entries are σ2ρ). This assumption on Σ to
have the intraclass correlation structure is a good compromise between the
assumption of arbitrary covariance structure and ignoring the correlations.
This assumption tries to capture the average correlation among the variables
instead of estimating all of them. Under this assumption, the MLE of Σ is
given by

Σ̂C = σ̂2(1− ρ̂)Ip + σ̂2ρ̂Jp, (2.2.3)

where

σ̂2 =
trace(Σ̂)

p
, (2.2.4)

σ̂2ρ̂ =

∑p
i,j=1;i 6=j Σ̂(i, j)

p(p− 1)
. (2.2.5)

So the regularization is given by

Σ̂C(γ) = (1− γ)Σ̂ + γΣ̂C . (2.2.6)

This regularization also improves the eigenvalues like the other one, because
the distinct eigenvalues of Σ̂C are only σ̂2(1− ρ̂) and [σ̂2 + (p− 1)σ̂2ρ̂]. The
second eigenvalue is nothing but 1T Σ̂1/1T1, and

1T Σ̂1

1T1
≥ min

l6=0

lT Σ̂l

lT l
= λmin(Σ̂).
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The other eigenvalue is

σ̂2(1− ρ̂)

=
trace(Σ̂)

p
− 1T Σ̂1− trace(Σ̂)

p(p− 1)

=

∑p
i=1 eT

i Σ̂ei

p
− 1T Σ̂1−∑p

i=1 eT
i Σ̂ei

p(p− 1)
[where, the ei’s are the unit vectors of RP ]

=
1

p− 1

[
p∑

i=1

eT
i Σ̂ei − 1

p
1T Σ̂1

]

=
1

p− 1

p∑
i=1

[
trace(Σ̂eie

T
i )

]
− trace(Σ̂

11T

p
)

=
1

p− 1
trace

[
Σ̂

(
p∑

i=1

eie
T
i −

11T

p

)]

=
1

p− 1
trace

[
Σ̂

(
Ip − Jp

p

)]

=
1

p− 1
trace

[
Σ̂

(
p−1∑
i=1

uiu
T
i

)]

(where, the ui’s are the eigenvectors of Ip − Jp

p
corresponding to the eigenvalue 1)

=
1

p− 1

p−1∑
i=1

trace
(
uT

i Σ̂ui

)

≥ 1

p− 1

p−1∑
i=1

λmin(Σ̂)

= λmin(Σ̂). (2.2.7)

So, λmin(Σ̂C) ≥ λmin(Σ̂). Hence, using the same argument as in (28),
λmin(Σ̂C(γ)) ≥ λmin(Σ̂).
In all these regularization methods, the optimal shrinkage parameter is es-
timated by minimizing the misclassification rate w.r.t. γ. To do this, the
interval [0, 1] is partitioned using s many equally spaced grid points : 0 =
t0, t1, . . . , ts = 1 (s is decided beforehand). Then the misclassification rate
corresponding to each γ (γ = t0, t1, . . . , ts) is obtained by using the leave-
one-out cross-validation method. The ti, for which the rate is minimum, is
taken as the value of γ.
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Smooth curve of misclassification Rates

There is one problem with the above method of estimation of the shrinkage
parameter. If the leave-one-out cross-validation method is used to estimate
the misclassification probability, the estimate turns out to be same for many
γs. So, the optimal γ cannot be determined uniquely. Also, the minimizer
depends on the number of grid points s. To overcome this difficulty, several
independent random partitions (into two parts) of the training set were used.
For each of these partitions, the estimates of misclassification probabilities
for all the partition-points were obtained by classifying one part of the train-
ing data using the classifiers (corresponding to each grid point) based on the
other part. A much smoother curve of the misclassification probability is ob-
tained by averaging the misclassification rates over these random partitions.
If the minimizer is still not unique, we go for the largest one.

2.3 Regularization with Aggregation

An alternative approach is to combine the results of all γ’s, instead of choos-
ing a particular γ, which minimizes the misclassification probability estimate.
If the results obtained at different levels of regularization are combined the
performance may improve. A natural choice of aggregation is to consider
a suitable weighted average of the posterior probabilities corresponding to
various γ. Bagging (see e.g. Breiman [3]), Boosting (see e.g. Schapire et al.
[17], Friedman, Hastie and Tibshirani [9]) are some well known aggregation
methods, which have been successfully used to combine the results of dif-
ferent classifier. The weighted posterior probability (function of γ) for each
class is integrated over γ to obtain a new posterior probability. Then using
this posterior, Bayesian classification rule can be constructed.
In our study we have considered two weight functions, similar to those used
in Ghosh et al. [10]. However, the simulation study (see Section 2.4.2) shows
that the aggregation methods do not improve the misclassification rates.

2.4 Simulation Studies

2.4.1 For Variable Selection

Simulation Plan

In the numerical experiment, two samples, each of size 50 from N100(0, I100)
and N100(µµ, I100) were considered, where the first ten components of µµ are
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(.2, .4, . . . , 2) and all other components are zeros. For the numerical experi-
ment of the second method, the same example was considered.

Results

Both the ratio estimates were observed to increase with the increase of dimen-
sion of the optimal subsets (as shown in (2.4.1)). So, this method may not
perform well in selection of variables, as the ratio estimates attain minimum
for subset size 1.
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(a) (b)

Figure 2.4.1: Plots of (a) ratio estimate against dimension and (b) misclas-
sification rate against dimension.

In the second method, the misclassification rates initially decreases with the
increase of dimension of the optimal subset and more or less stabilizes af-
ter some stage, as shown in Figure 2.4.1(b). In this method also, no clear
guideline was obtained for discarding the less relevant variables, namely the
variables with the same mean for the two populations.

Discussion

While investigating this particular behavior of the ratio estimates, it was re-
alized that this behavior of R2 is quite expected. The reason for this behavior
can be explained as follows. In this case numerator of R2 is the average of
N1 + N2 random variables each having χ2(d) distribution, if subset of d vari-
ables is considered. Similarly, the denominator of R2 is the average of 2N1N2

random variables each following noncentral χ2(d, νT ν) distribution, where ν
is the separation between the mean of the two populations corresponding
to the subset of d variables. So, if the numerator and the denominator of
R2 can be approximated by the mean of the corresponding distribution, the
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population neighbor vs. non-neighbor will be approximately 2d/(2d + νT ν),
where ν = (ν1, . . . , νd). Now if we include another variable in the subset,
the corresponding population ratio becomes (2d + 2)/(2d + 2 + νT

1 ν1), where
ν1 = (ν1, . . . , νd, νd+1). So there will be an improvement after the inclusion,
only if

2d

2d + νT ν
>

2(d + 1)

2(d + 1) + νT
1 ν1

⇔ νd+1 >
νT ν

d
. (2.4.1)

This condition will not be satisfied if the variables are arranged in decreas-
ing order of mean-separation between the two populations and the first d
variables are considered as the optimal d-subset. In our experiment, after
choosing the variables using forward selection method, they become ordered
in the previous sense, and hence the increasing behavior of R2 is observed.
Later investigation proved that this is also not very surprising. Because, if
LDA is used with known mean and covariance matrix, the actual misclassi-
fication probability is given by Φ(∆), where

∆ = µTΣ−1µ (2.4.2)

is the Mahalanobis distance between the two populations and µ is the differ-
ence between the two populations. In our example, ∆ = µT µ. So, whenever a
variable is included in a subset, ∆ will increase (unless the included variable
has the same mean for the populations) resulting in decrease of misclassifica-
tion probability, irrespective of whether the included variable is relevant or
not. So, this method also does not provide a unique optimal subset of vari-
ables. The only possible way to discard the irrelevant variables is to get the
value of d after which there is no significant change in the misclassification
rates in the above method. This will be considered later.

A Conceptual Issue

Another important fact regarding variable selection is that, if the variables
are correlated, the apparently irrelevant variables (i.e. having equal mean
for the populations) may sometime improve the misclassification probability
considerably. To see this, let us consider a partition

µµ =

[
µT

1

µT
2

]
and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
(2.4.3)

where µ2 = 0 and µ1 is d × 1. Now, if we use only the first d variables for
classification, then the Bayes Risk will be Φ(∆1) and if all the variables are
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used, then the Bayes Risk will be Φ(∆2), where

∆1 = µµTΣ−1
11 µ1 (2.4.4)

∆2 = µµTΣ11µ1, (2.4.5)

and

Σ−1 =

[
Σ11 Σ12

Σ21 Σ22

]
. (2.4.6)

Clearly, Σ11 = (Σ11 − Σ12Σ
−1
22 Σ21)

−1 ≥ Σ−1
11 (in Lowner order). So, ∆1 ≤

∆2 and hence Φ(∆1) ≥ Φ(∆2). This phenomenon is also reflected in the
numerical experiment. To see the improvement of misclassification rate, when
all the variables are used, two experiments were done. In the first one,
N2 (0,Σ) and N2 (µµ,Σ) were considered as the populations, where µµT =
[2, 0], Σ11 = Σ22 = 1. For various choices of Σ12, misclassification rates
corresponding to the two classifiers (based on only the first variable and both
the variables, respectively) were compared (see (2.4.2)). In the other one, two
populations were considered from N3(0,Σ) and N3(µµ,Σ) distribution, where
µµT = (2, 0, 0) and

Σ =




1 ρ ρ
ρ 1 ρ
ρ ρ 1


 (2.4.7)

Misclassification using all three variables is observed to be considerably less
than that of the classifier, which uses only the first variable. The difference
is more prominent if ρ is more than .5 (see (2.4.2)). This is a difficult aspect
of the variable selection method, because seemingly irrelevant variables can
sometimes help to improve misclassification rates. In these situations one
should not drop those variables.

For this reason the variable selection method, I have tried some alterna-
tives like Regularization.

2.4.2 For Regularization

Simulation Plan

To compare the performances of three different shrinkage methods namely
shrinkage towards multiple of identity, intra-class correlation and diagonal
matrix respectively and three different procedures (minimization of the mis-
classification rates w.r.t the shrinkage parameter, general aggregation and
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Figure 2.4.2: Decrease in misclassification probability, when all the variables
are used instead of the only one which has different means for the two pop-
ulations

case-dependent aggregation) associated with each of the methods, for vari-
ous combinations of the parameters of the true underlying populations, the
following numerical experiment was conducted. For fixed n (sample size per
population), d (dimension of the populations) and ∆ (the squared Maha-
lanobis distance between the two populations, which represents the difficulty
level of classification) 6 different covariance matrices were considered. They
are

Σ1 = Identity matrix of order d
Σ2 =Intraclass Correlation Matrix with each variance 1 and correlation 0.1
Σ3 = Intraclass Correlation Matrix with each variance 1 and correlation 0.5
Σ4 = Intraclass Correlation Matrix with each variance 1 and correlation 0.9
Σ5 = Diagonal Matrix with variances 1, 2, . . . , d
Σ6 = Block Diagonal Matrix with three blocks of sizes [d

3
], [d

3
] and d − 2[d

3
]

where the first block has intra-class correlation structure with variance d
and covariance d − 1, the second block is a diagonal matrixwith variances
1, 2, . . . , [d

3
] and the last block is an identity matrix of corresponding order
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The mean separation between the two populations was taken as

k
(
1, 2, . . . ,

[
d
3

]
, 0, 0, . . . , 0

)
,

for some constant k, which is uniquely determined by ∆ and Σi, i = 1, 2, . . . , 6.
For each Σi, i = 1, 2, . . . , 6, two training sets, each of size n, from Nd (0,Σi)
and Nd (µµ,Σi) were considered. The interval [0, 1] is divided into 100 grid
points (including 0 and 1) for γ. Smooth curve of misclassification rates
corresponding to the three different shrinkage method were obtained aver-
aging over 100 independent random partitions of the training sets and using
the method described in section (3.2.4). Misclassification probabilities for 9
classifiers were obtained based on the full training set and using the above
smooth curve. Lastly, misclassification rates corresponding to the classifiers
were obtained by applying them on an independent test set of sample size
1000. The experiment was repeated for ∆ = 1, 4, 9, 16 (for fixed n and d).
Then, the whole experiment is repeated for several n and d combinations.
For fixed n and ∆, a 3× 2 panel was used to plot the misclassification rates,

where ith panel (viewed row- wise)corresponds to Σi, i = 1, 2, . . . , 6. for each
Σi, misclassification rates for the 9 classifiers were plotted against dimension,
using three different colors (for different shrinkage methods) and three dif-
ferent line types (for different procedures), as described below.

Shrinkage towards Identity Matrix : RED
Shrinkage towards Intra-class Correlation Matrix : GREEN
Shrinkage towards Diagonal Matrix : BLUE

Minimization w.r.t shrinkage parameter : DOTTED
General Aggregation : DASHED
Case-dependent Aggregation : DOT-DASHED

Results and Discussion

First point to be noted is better performance of ’minimization w.r.t shrinkage’
method compared to aggregation, because in most of the cases, the dotted
line lies below the dashed or dot-dashed line. So, we do not gain much by us-
ing the more complex (computationally) aggregation procedures. Secondly,
among the dotted lines, the red ones are more on the higher side compared
to the blue or green ones. This suggests that shrinkage towards identity
may not perform well, when the actual covariance matrix is substantially
different from constant times identity. Thirdly, the classifier corresponding
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to blue dotted lines perform more or less better in all the cases. This sug-
gests shrinkage towards an appropriate diagonal matrix may be more useful
in high dimensional classification problem. Lastly, in some cases the green
dotted lines are comparable to the blue ones. Actually, there is a scope of im-
provement in the ’shrinkage towards Intra-class Correlation matrix’ method,
because in this method all the variances were assumed to be equal. Clearly,
this assumption is not sufficient. So, if only the correlations of the variables
are assumed to be equal with no restriction on the variances, the correspond-
ing classifier may be a good competitor of the ’shrinkage towards diagonal’
method.
So, the following question was raised after the simulation study.

• How much improvement in misclassification probability is
possible if shrinkage towards a covariance matrix with pos-
sibly unequal variances and intra-class correlation structure
is considered?
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Figure 2.4.3: Misclassification Probability plotted against dimension for
N = 50, ∆ = 1. Colors red, blue and green indicate shrinkage towards iden-
tity, intraclass correlation and diagonal matrices, respectively, while dotted,
dashed and dot-dashed lines indicate pointwise minimum, general aggrega-
tion and case-specific aggregation, respectively. The black line shows the
Bayes risk. The six panels (viewed row-wise) correspond to correct covari-
ance matrices Σ1, . . . ,Σ6, respectively.
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Figure 2.4.4: Misclassification Probability plotted against dimension for
N = 50, ∆ = 4, Σ = I. Colors red, blue and green indicate shrinkage
towards identity, intraclass correlation and diagonal matrices, respectively,
while dotted, dashed and dot-dashed lines indicate pointwise minimum, gen-
eral aggregation and case-specific aggregation, respectively. The black line
shows the Bayes risk. The six panels (viewed row-wise) correspond to correct
covariance matrices Σ1, . . . ,Σ6, respectively.
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Figure 2.4.5: Misclassification Probability plotted against dimension for
N = 50, ∆ = 9. Colors red, blue and green indicate shrinkage towards iden-
tity, intraclass correlation and diagonal matrices, respectively, while dotted,
dashed and dot-dashed lines indicate pointwise minimum, general aggrega-
tion and case-specific aggregation, respectively. The black line shows the
Bayes risk. The six panels (viewed row-wise) correspond to correct covari-
ance matrices Σ1, . . . ,Σ6, respectively.
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Figure 2.4.6: Misclassification Probability plotted against dimension for
N = 50, ∆ = 16. Colors red, blue and green indicate shrinkage towards
identity, intraclass correlation and diagonal matrices, respectively, while dot-
ted, dashed and dot-dashed lines indicate pointwise minimum, general aggre-
gation and case-specific aggregation, respectively. The black line shows the
Bayes risk. The six panels (viewed row-wise) correspond to correct covariance
matrices Σ1, . . . ,Σ6, respectively.
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2.5 Discussion of Simulation Results on Reg-

ularization

As it was realized from the simulation studies that shrinkage towards a suit-
able intraclass-correlation matrix with possibly different variances may gener-
ally improve the misclassification probability. Keeping this in mind, we tried
to find the MLE of σ2

1, . . . , σ
2
p and ρ under the assumption thatΣ = DRD,

where

D =




σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σp


 ; R =




1 ρ . . . ρ
ρ 1 . . . ρ
...

...
. . .

...
ρ ρ . . . 1


 = (1− ρ)Ip + ρJp.

This is equivalent to minimizing trace(Σ−1S)+ log(|Σ|) w.r.t σ1, . . . , σp, ρ,
where S is the sum of squares and product matrix

S =

∑n
i=1(Xi −X)(Xi −X)T +

∑n
i=1(Yi −Y)(Yi −Y)T

2n
.

Now,

trace(Σ−1S) + ln|Σ|
=trace[D−1(aIp + bJp)D

−1S] + 2ln|D|+ ln|R|(
where a =

1

1− ρ
, b = − ρ

(1− ρ)(1 + p− 1ρ)

)

=a.trace(D−1SD−1) + b.trace(1T
p D−1SD−11p) + 2ln|D|+ ln|R|

=a.

p∑
i=1

Siiτ
2
i + b.ττTSττ − 2

p∑
i=1

lnτi + ln|R|
(

where ττ = (ττ 1, . . . , τp) and ττ i =
1

σi

)

=ττT Aττ − 2

p∑
i=1

lnττ i + ln|R| (where A = a.DIAG(S) + b.S).

For fixed ρ, the above is minimized whenAττ = 1/ττ , where 1/ττ = (ττ−1
1 , . . . , ττ−1

p )T .
This is a nonlinear equation and has no closed form solution. So numerical
methods were used (using Sii as the initial estimate of σi) to minimize the
function and to obtain the MLE.
Next, in order to compare this method with other shrinkage methods, a sim-
ulation study was conducted. There a surprising fact was observed. If the
true Σ is known to have intra-class correlation structure even with different
variances, the effect of error in mean-estimation on misclassification rates
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is much more than the effect of error in Σ-estimation. The results of the
simulation studies are displayed in Figure 2.5. This is surprising, because in
high dimensional classification problems estimation of Σ is expected to be
more critical than µµ-estimation. The above simulation result gives rise to
the following questions.

• What is more important in classification problem :
µµ-estimation, or Σ-estimation?

• To what extent the misclassification probability is
affected, when µµ is known and Σ is estimated?

These questions are addressed in the next chapter.
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Chapter 3

Effects of Mean and Covariance
Estimation

3.1 Comparison Between the Two Effects

In this section, we are trying to answer the first question, namely which of
the two errors (corresponding to the estimation of the mean and the covari-
ance matrix) contributes more to increase the misclassification probability.
For this section, we will assume the sample size n to be large so that higher
order terms (e.g., O(n−2)) can be ignored. Intuitively, the estimation of co-
variance matrix should be more important, as it involves more parameters
than the mean. In this section, we have tried to give some theoretical justi-
fication to this intuitive reasoning.

Proposition 3.1.1. In a classification problem with two populations N(µµ1,Σ)
and N(µµ2,Σ), if sample means and sample covariance are used as estimates
of µµ1, µµ2,Σ, then the misclassification probability is approximately given by

Bayes Risk +
1

n

1

2
√

∆

[
(p− 1) +

∆

4︸ ︷︷ ︸
+ (p− 1)

∆

4︸ ︷︷ ︸

]
φ

(√
∆

2

)

contribution contribution
. due to µµ-estimation due to Σ-estimation

Hence, contribution of error due to Σ-estimation is more than that of means when
∆ ≥ 4(p− 1)/(p− 2) ≈ 4.

Proof. We know that, if the parameters µµ1, µµ2 and Σ are estimated by µ̂µ1, µ̂µ2
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and Σ̂ respectively based on the training sample, then the conditional mis-
classification probability for a future observation X ∼ N(µµ1,Σ) is given by

P[(µ̂µ1 − µ̂µ2)
T Σ̂−1(X− µ̂µ1 + µ̂µ2

2
) < 0]

= Φ


 µ̂µT Σ̂−1(µµ1 − (µ̂µ1 + µ̂µ2)/2)√

µ̂µT Σ̂−1ΣΣ̂−1µ̂µ


 ,

where µµ = µµ1 − µµ2. So, the unconditional misclassification probability is
given by

E


Φ


 µ̂µT Σ̂−1(µµ1 − (µ̂µ1 + µ̂µ2)/2)√

µ̂µT Σ̂−1ΣΣ̂−1µ̂µ







while the Bayes risk is

Φ

(√
µµTΣ−1µµ

2

)
= Φ

(√
∆

2

)
.

By the symmetry of the problem, the unconditional misclassification proba-
bility for a future observation from N(µµ2,Σ) is the same as (3.1).
If µ̂µ1, µ̂µ2 and Σ̂ are taken to be the sample means and the pooled covariance,
then the errors are of the order n−1/2, where n is the common sample size
of the training sample from the two population, as all these estimates are
moment-estimates. So, let us assume that

µ̂µ1 = µµ1 +
εε1√
n

,

µ̂µ2 = µµ2 +
εε2√
n

and Σ̂ = Σ +
Λ√
n

.

Clearly, εε1, εε2 ∼ N(0,Σ) and (n
′
Σ̂) ∼ Wp(n

′
,Σ), where n

′
= 2n− 2, and all

of them are independent. Let

δδ1 = εε1 − εε2

and δδ2 = εε1 + εε2
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Then, δδ1, δδ2 ∼ N(0, 2Σ) and they are independent. Also, Σ̂ and hence Λ is
independent of δδ1, δδ2. Now, if we neglect higher order terms, then

µ̂µT Σ̂−1

(
µµ1 −

µ̂µ1 + µ̂µ2

2

)

=

(
µµ1 +

εε1√
n
− µµ2 −

εε2√
n

)T (
Σ +

Λ√
n

)−1
(

µµ1 −
µµ1 + εε1√

n
+ µµ2 + εε2√

n

2

)

=
(
µµ + δδ1/

√
n
)T

Σ− 1
2

(
I +

Σ− 1
2ΛΣ− 1

2√
n

)−1

Σ− 1
2

(
µµ + δδ2/

√
n

2

)

≈ 1

2

[(
µµ +

δδ1√
n

)T

Σ− 1
2

(
I − Σ− 1

2ΛΣ− 1
2√

n
+

Σ− 1
2ΛΣ−1ΛΣ− 1

2

n

)
Σ− 1

2

(
µµ +

δδ2√
n

)]

=
1

2

[
µµTΣ−1µµ +

1√
n

(
µµTΣ−1δδ1 + µµTΣ−1δδ2 − µµTΣ−1ΛΣ−1µµ

)]

+
1

2

[
1

n

(
µµTΣ−1ΛΣ−1ΛΣ−1µµ− µµTΣ−1ΛΣ−1δδ1 − µµTΣ−1ΛΣ−1δδ2 + δδT

1 Σ−1δδ2

)]

=
µµTΣ−1µµ

2

[
1 +

a1√
n

+
a2

n

]
(say),

where

a1 =
µµTΣ−1δδ1 + µµTΣ−1δδ2 − µµTΣ−1ΛΣ−1µµ

µµTΣ−1µµ

and a2 =
µµTΣ−1ΛΣ−1ΛΣ−1µµ− µµTΣ−1ΛΣ−1δδ1 − µµTΣ−1ΛΣ−1δδ2 + δδT

1 Σ−1δδ2

µµTΣ−1µµ
.
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Similarly,

µ̂µT Σ̂−1ΣΣ̂−1µ̂µ

=

(
µµ +

δδ1√
n

)T (
Σ +

Λ√
n

)−1

Σ

(
Σ +

Λ√
n

)−1 (
µµ +

δδ1√
n

)

=

(
µµ +

δδ1√
n

)T

Σ− 1
2

(
I +

Σ− 1
2ΛΣ− 1

2√
n

)−2

Σ− 1
2

(
µµ +

δδ1√
n

)

≈
(

µµ +
δδ1√
n

)T

Σ− 1
2

(
I − 2

Σ− 1
2ΛΣ− 1

2√
n

+ 3
(Σ− 1

2ΛΣ− 1
2 )2

n

)
Σ− 1

2

(
µµ +

δδ1√
n

)

=µµTΣ−1µµ +
1√
n

(
2µµTΣ−1δδ1 − 2µµTΣ−1ΛΣ−1µµ

)
+

1

n

(
3µµTΣ−1ΛΣ−1ΛΣ−1µµ− 4µµTΣ−1ΛΣ−1δδ1 + δδT

1 Σ−1δδ2

)

=µµTΣ−1µµ

[
1 +

b1√
n

+
b2

n

]
(say),

where

b1 =
2µµTΣ−1δδ1 − 2µµTΣ−1ΛΣ−1µµ

µµTΣ−1µµ

and b2 =
3µµTΣ−1ΛΣ−1ΛΣ−1µµ− 4µµTΣ−1ΛΣ−1δδ1 + δδT

1 Σ−1δδ1

µµTΣ−1µµ
.

Hence,

µ̂µT Σ̂−1(µµ1 − (µ̂µ1 + µ̂µ2)/2)√
µ̂µT Σ̂−1ΣΣ̂−1µ̂µ

≈((µµTΣ−1µµ)/2)
[
1 + n−1/2a1 + n−1a2

]
√

µµTΣ−1µµ [1 + n−1/2b1 + n−1b2]

=

√
µµTΣ−1µµ

2

[
1 +

a1√
n

+
a2

n

] [
1 +

b1√
n

+
b2

n

]− 1
2

≈
√

∆

2

[
1 +

a1√
n

+
a2

n

] [
1− b1

2
√

n
+

1

n

(
−b2

2
+

3

8
b2
1

)]

≈
√

∆

2

[
1 +

1√
n

(
a1 − b1

2

)
+

1

n

(
a2 − a1b1

2
− b2

2
+

3

8
b2
1

)]

=

√
∆

2

[
1 +

c1√
n

+
c2

n

]
(say)

Using the Taylor-Expansion for the function Φ(.) about
√

∆
2

up to the first
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order, we get

Φ


 µ̂µT Σ̂−1(µµ1 − (µ̂µ1 + µ̂µ2)/2)√

µ̂µT Σ̂−1ΣΣ̂−1µ̂µ




≈Φ

[√
∆

2

(
1 +

c1√
n

+
c2

n

)]

≈Φ

(√
∆

2

)
+

√
∆

2

(
c1√
n

+
c2

n

) [
−φ

(√
∆

2

)]
+

1

2

∆

4

c2
1

n

[
−φ

′
(√

∆

2

)]

(as we are interested in the terms of order
1

n
).

So, the misclassification probability can be approximated as

E


Φ


 µ̂µT Σ̂−1(µµ1 − (µ̂µ1 + µ̂µ2)/2)√

µ̂µT Σ̂−1ΣΣ̂−1µ̂µ







≈Φ

(√
∆

2

)
+

√
∆

2

(
E(c1)√

n
+

E(c2)

n

) [
−φ

(√
∆

2

)]

+
1

n

∆

8
Ec2

1

[
−φ

′
(√

∆

2

)]
.

Now,

E(c1) = E

(
a1 − b1

2

)
= E

[
µµTΣ−1δδ2

µµTΣ−1µµ

]
= 0 (as E(δδ2) = 0),

and

E(c2) =E

[
a2 − b2

2
− a1b1

2
+

3

2

(
b1

2

)2
]

=E

[
µµTΣ−1ΛΣ−1ΛΣ−1µµ− µµTΣ−1ΛΣ−1(δδ1 + δδ2) + δδT

1 Σ−1δδ2

µµTΣ−1µµ

]

− E

[
3
2
µµTΣ−1ΛΣ−1ΛΣ−1µµ− 2µµTΣ−1ΛΣ−1δδ1 + 1

2
δδT
1 Σ−1δδ1

µµTΣ−1µµ

]

− E

[
(µµTΣ−1δδ1 − µµTΣ−1ΛΣ−1µµ + µµTΣ−1δδ2)(µµ

TΣ−1δδ1 − µµTΣ−1ΛΣ−1µµ)

(µµTΣ−1µµ)2

]

+
3

2

[
(µµTΣ−1δδ1 − µµTΣ−1ΛΣ−1µµ)2

(µµTΣ−1µµ)2

]
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=E

[
µµTΣ−1ΛΣ−1ΛΣ−1µµ

∆

]
− E

[
3
2
µµTΣ−1ΛΣ−1ΛΣ−1µµ + 1

2
δδT
1 Σ−1δδ1

∆

]

− E

[
(µµTΣ−1δδ1 − µµTΣ−1ΛΣ−1µµ)2

∆2

]
+

3

2
E

[
(µµTΣ−1δδ1 − µµTΣ−1ΛΣ−1µµ)2

∆2

]

(as E(δδ1) =E(δδ2) = 0, E(Λ) = 0, and δδ1, δδ2 and Λ are independent)

=E

[
−1

2
µµTΣ−1ΛΣ−1ΛΣ−1µµ− 1

2
δδT
1 Σ−1δδ1

∆

]
+

1

2
E

[
(µµTΣ−1δδ1 − µµTΣ−1ΛΣ−1µµ)2

∆2

]

=E

[
−1

2
µµTΣ−1ΛΣ−1ΛΣ−1µµ− 1

2
δδT
1 Σ−1δδ1

∆

]
+

1

2
E

[
(µµTΣ−1δδ1)

2 + (µµTΣ−1ΛΣ−1µµ)2

∆2

]

(as δδ1 and Λ are independent)

=− 1

2

∆E(δδT
1 Σ−1δδ1)− E(µµTΣ−1δδ1)

2 + ∆E(µµTΣ−1ΛΣ−1ΛΣ−1µµ)− E(µµTΣ−1ΛΣ−1µµ)2

∆2

=− 2p∆− 2∆ + n
n′ (p + 1)∆2 − n

n′ 2∆2

2∆2

(as δδ1 ∼ N(0, 2Σ),
δδT
1 Σ−1δδ1

2
∼ χ2

p,

we have, E(µµTΣ−1δδ1)
2 =Var(µµTΣ−1δδ1) = 2∆,E(δδT

1 Σ−1δδ1) = 2p)

(The other two quantities are obtained from Eq(1))

=− p− 1

2∆2
[2∆ +

n

n′
∆2],
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because

E(µµTΣ−1ΛΣ−1µµ)2

=nE

[
µµTΣ− 1

2

(
Σ− 1

2ΛΣ− 1
2√

n

)
Σ− 1

2 µµ

]2

=nE
[
µµTΣ− 1

2

(
Σ− 1

2 Σ̂Σ− 1
2 − I

)
Σ− 1

2 µµ
]2

=nE

[
µµTΣ− 1

2

(
Σ− 1

2
S

n′
Σ− 1

2 − I

)
Σ− 1

2 µµ

]2

(as Σ̂ =
S

n′
= Σ +

Λ√
n

)

=n(µµTΣ−1µµ)2E

[
1

n′
µµTΣ− 1

2WΣ− 1
2 µµ

µµTΣ−1µµ
− 1

]2

(W = Σ− 1
2SΣ− 1

2 ∼ Wp(n
′
, I), as S ∼ Wp(n

′
,Σ))

=n∆2E

[
Y

n′
− 1

]2

( Y =
µµTΣ− 1

2WΣ− 1
2 µµ

µµTΣ−1µµ
∼ χ2

n
′ )

=n∆2

[
EY 2

n′2
+ 1− 2

EY

n′

]

=n∆2

[
n
′2 + 2n

′

n′2
+ 1− 2

n
′

n′

]
= 2

n

n′
∆2,

and

E(µµTΣ−1ΛΣ−1ΛΣ−1µµ)

=nE


µµTΣ− 1

2

(
Σ− 1

2ΛΣ− 1
2√

n

)2

Σ− 1
2 µµ




=nE

[
µµTΣ− 1

2

(
W

n′
− I

)2

Σ− 1
2 µµ

]
(where W is as above, W ∼ Wp(n

′
, I))

=n

[
µµTΣ− 1

2 E

(
W

n′
− I

)2

Σ− 1
2 µµ

]
= n

[
µµTΣ− 1

2

(
EW2

n′2
+ I − 2

EW

n′

)2

Σ− 1
2 µµ

]

=n

[
µµTΣ− 1

2

(
n
′
(n

′
+ p + 1)

n′2
I + I − 2

n
′

n′
I

)2

Σ− 1
2 µµ

]
= (p + 1)

n

n′
(µµTΣ−1µµ) = (p + 1)

n

n′
∆.

Finally,

Ec2
1 =E

[
a1 − b1

2

]2

= E

[
µµTΣ−1δδ2

µµTΣ−1µµ

]2

(substituting the values of a1 and b1)

=
Var(µµTΣ−1δδ2)

∆2
=

2∆

∆2
(as δδ2 ∼ N(0, 2Σ))
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Hence, collecting all the coefficients, we have the misclassification probability

E


Φ


 µ̂µT Σ̂−1(µµ1 − µ̂µ1+µ̂µ2

2
)√

µ̂µT Σ̂−1ΣΣ̂−1µ̂µ







≈Φ

(√
∆

2

)
+

1

n

[√
∆

2

p− 1

2∆2
(2∆ +

n

n′
∆2)φ

(√
∆

2

)
+

∆

8

2∆

∆2

{
−φ

′
(√

∆

2

)}]

=Φ

(√
∆

2

)
+

1

n

[√
∆

2

p− 1

2∆2
(2∆ +

n

n′
∆2)φ

(√
∆

2

)
+

∆

8

2∆

∆2

√
∆

2
φ

(√
∆

2

)]

(as φ
′
(x) = −xφ(x))

=Φ

(√
∆

2

)
+

1

n

√
∆

2∆2

[
(p− 1)∆ +

∆2

4
+ (p− 1)

n

2n− 2

∆2

2

]
φ

(√
∆

2

)

=Φ

(√
∆

2

)
+

1

n

1

2
√

∆

[
(p− 1) +

∆

4
+ (p− 1)

n

2n− 2

∆

2

]
φ

(√
∆

2

)

≈Φ

(√
∆

2

)
+

1

n

1

2
√

∆

[
(p− 1) +

∆

4︸ ︷︷ ︸
+ (p− 1)

∆

4︸ ︷︷ ︸

]
φ

(√
∆

2

)

contribution contribution
due to µµ-estimation due to Σ-estimation

Clearly, the contribution of the error of Σ-estimation is more, when (p −
1)∆/4 ≥ (p− 1) + ∆/4 or equivalently ∆ ≥ 4(p− 1)/(p− 2) ≈ 4. ¤

However, when the covariance matrix is known to have intra-class correla-
tion structure with possibly different variances, the estimation of the means
turns out to be more important. The simulation study shows that, in such
a situation, if µµ is known, the misclassification probability is quite close to
the Bayes risk [as shown in Figure 2.5]. On the other hand, if µµ is unknown,
even when Σ is known, the misclassification probability may be quite far
away from the Bayes risk. To prove this phenomenon theoretically is diffi-
cult, though a special case of this has been discussed in the next proposition.
One possible reason for this is that the number of parameters in Σ becomes
small when Σ has intra-class correlation structure.

Proposition 3.1.2. If all the correlations are ignored and the variances are
estimated by the corresponding sample analogues, then the misclassification
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probability is approximately given by

Misclassification Probability = Bayes Risk +

[lTRl.lTR−1l− (lT l)2]
φ

[√
∆
2

]

2∆
√

∆︸ ︷︷ ︸
+

1

n− 1

[
lTRl.lT ((rijr2

ij))l−
∑
i,j

l2i l
2
jr

2
ij

]
φ

[√
∆
2

]

2∆
√

∆
︸ ︷︷ ︸

,

Bias for using wrong structure of Σ n−1 order term

where l = R−1D−1µµ. Here R is the true correlation matrix, R−1 = ((rij))
and Σ = DRD, where D is a diagonal matrix with the standard deviations
as the diagonal entries.

Proof. As we have seen in the earlier proposition, if error in estimation of Σ
is of the order n−1/2 i.e., Σ̂ = Σ+Λn−1/2, then the resulting misclassification
probability is approximately equal to

Φ

(√
∆

2

)

︸ ︷︷ ︸
+

1

n

√
∆

2

[
∆E(µµTΣ−1ΛΣ−1ΛΣ−1µµ)− E(µµTΣ−1ΛΣ−1µµ)2

∆2

]
φ

[√
∆

2

]

(3.1.1)
Bayes Risk

Now, if all the correlations are ignored and the variances are estimated from
the training data, then the natural estimate to consider is

Σ̂D =




σ̂2
1 0 . . . 0
0 σ̂2

2 . . . 0
...

...
. . .

...
0 0 . . . σ̂2

p


 ,

where

σ̂2
k =

∑n
i=1(Xik −Xk)

2 +
∑n

i=1(Yik − Y k)
2

2(n− 1)
; , k = 1, 2, . . . , p.

Here, Xi = (Xi1, . . . , Xip); i = 1, . . . , n and Yi = (Yi1, . . . , Yip); i = 1, . . . , n
are the training samples.
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Now we need to calculate

E(µµTΣ−1ΛΣ−1ΛΣ−1µµ)

=n E

[
µµTΣ−1 Λ√

n
Σ−1 Λ√

n
Σ−1µµ

]

=n E

[
µµTΣ− 1

2

(
Σ− 1

2
Λ√
n
Σ− 1

2

)2

Σ− 1
2 µµ

]

=n E

[
µµTΣ− 1

2

{
Σ− 1

2

(
Σ̂D −Σ

)
Σ− 1

2

}2

Σ− 1
2 µµ

]

=n E

[
µµTΣ− 1

2

(
Σ− 1

2 Σ̂DΣ− 1
2 − I

)2

Σ− 1
2 µµ

]

=n E
[
µµTΣ−1Σ̂DΣ−1Σ̂DΣ−1µµ + µµTΣ−1µµ− 2µµTΣ−1Σ̂DΣ−1µµ

]

and

E(µµTΣ−1ΛΣ−1µµ)2

=n E

(
µµTΣ−1 Λ√

n
Σ−1µµ

)2

=n E
[
µµTΣ−1(Σ̂D −Σ)Σ−1µµ

]2

=n E
[
µµTΣ−1Σ̂DΣ−1µµ− µµTΣ−1µµ

]2

=n E
[
(µµTΣ−1Σ̂DΣ−1µµ)2 + (µµTΣ−1µµ)2 − 2µµTΣ−1µµ.µµTΣ−1Σ̂DΣ−1µµ

]

So,

∆ E(µµTΣ−1ΛΣ−1ΛΣ−1µµ)− E(µµTΣ−1ΛΣ−1µµ)2

=n[µµTΣ−1µµ E(µµTΣ−1Σ̂DΣ−1Σ̂DΣ−1µµ)− E(µµTΣ−1Σ̂DΣ−1µµ)2]

=n[lTRl E{lT (D−1Σ̂DD−1)R−1(D−1Σ̂DD−1)l} − E{lT (D−1Σ̂DD−1)l}2]

(putting Σ−1 = D−1R−1D−1 and l = R−1D−1µµ)

=εε (say)

Now, D−1Σ̂DD−1 = W(say) is nothing but

W =




σ̂2
1

σ2
1

0 . . . 0

0
σ̂2
2

σ2
2

. . . 0
...

...
. . .

...

0 0 . . .
σ̂2

p

σ2
p



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Clearly, 2(n− 1)Wii ∼ χ2(2n− 2)∀i. So, E(Wii) = 1 and E(WiiWjj) is given
by

E(WiiWjj) = E

(
σ̂2

i

σ2
i

σ̂2
j

σ2
j

)
= 1 +

r2
ij

n− 1
∀i, j = 1, 2, . . . , p

Hence, we have

εε =n[lTRl E(lTWR−1Wl)− E(lTWl)2]

=n


lTRl.lT E((rijWiiWjj))l− E

(
p∑

i=1

l2i Wii

)2



=n


lTRl.lT ((rij EWiiWjj))l−

(
p∑

i,j=1

l2i l
2
j EWiiWjj

)2



=n


lTRl.lT

((
rij1 +

r2
ij

n− 1

))
l−

(
p∑

i,j=1

l2i l
2
j1 +

r2
ij

n− 1

)2



=n

[
lTRl.lT ((rij))l−

(
p∑

i,j=1

l2i l
2
j

)
+

1

n− 1

{
lTRl.lT ((rijr2

ij))l−
p∑

i,j=1

l2i l
2
jr

2
ij

}]

=n

[
lTRl.lTR−1l− (lT l)2 +

1

n− 1

{
lTRl.lT ((rijr2

ij))l−
p∑

i,j=1

l2i l
2
jr

2
ij

}]
.

Plugging in the value of εε in (3.1.1), we get

misclassification probability

≈ Φ

(√
∆

2

)
+

1

n

√
∆

2∆2

[
n{lTRl.lTR−1l− (lT l)2}+

{
n

n− 1
lTRl.lT ((rijr2

ij))

− n

n− 1

p∑
i,j=1

l2i l
2
jr

2
ij

}]
φ

[√
∆

2

]

= Φ

(√
∆

2

)

︸ ︷︷ ︸
+ [lTRl.lTR−1l− (lT l)2]

φ
[√

∆
2

]

2∆
√

∆︸ ︷︷ ︸
Bayes Risk Bias for assuming wrong Σ
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+
1

n− 1

[
lTRl.lT ((rijr2

ij))l−
p∑

i,j=1

l2i l
2
jr

2
ij

]
φ

[√
∆
2

]

2∆
√

∆
︸ ︷︷ ︸

1/n-order term

This completes the decomposition of misclassification probability into dif-
ferent parts. ¤

Following corollary shows the advantage of ignoring all correlations when the
true Σ is a diagonal matrix,

Corollary 3.1.3. When the true Σ is diagonal, i.e the correlation matrix
R = Ip, then there is no bias term for ignoring all correlations, and it is
better to use diagonal matrix rather than sample covariance matrix.

Proof. The bias term for ignoring the correlations is lTRl.lTR−1l−(lT l)2 = 0,
where l is as in Proposition 3.1.2. Also,

1/n-order error term in misclassification probability, when Σ̂D is used

c(∆)

n− 1

[
lTRl.lT ((rijr2

ij))l−
p∑

i,j=1

l2i l
2
jr

2
ij

]

=
c(∆)

n− 1

[
(lT l)2 −

p∑
i=1

l4i

]
(as R = Ip, rij = r2

ij = rij = δδij)

≤ c(∆)

n− 1

[
(lT l)2 − 1

p
(lT l)2

] 
by Cauchy-Schwartz Inequality

(
p∑

i=1

l2i

)2

≤ p

p∑
i=1

l4i




=
c(∆)

n− 1

p− 1

p
(lT l)2

≤ c(∆)

2(n− 1)
(p− 1)(lT l)2

=
c(∆)

2(n− 1)
(p− 1)∆2 (as ∆ = µµTΣ−1µµ = µµT D−2µµ = lT l)

=1/n-order error term in misclassification probability, when Σ̂ is used.

Hence, misclassification probability for using the diagonal matrix is smaller
than that of using the sample covariance matrix. ¤

So, in general the contribution of error due to covariance estimation to the
misclassification probability is more than that for mean estimation, unless
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the populations are quite close to each other or the covariance Σ is highly
parameterized. So, in the following sections, we will assume that mean-
separation vector µµ = µµ1 − µµ2 to be known to study the effect of Σ̂ in the
misclassification probability and whether it can be improved using regular-
ization.

3.2 Effect of Estimation of Σ in Classification

Problems

In this section, we will study the extent, to which the future misclassification
probability can be affected, when an estimate of Σ is used. In this study,
since we are concentrating on the effect of Σ-estimation, we are assuming
that the mean-separation vector is known for time being.

3.2.1 Nonsingular Σ̂

So, let us consider two populations N(µµµµ1,Σ) and N(µµµµ2,Σ) with known mean-
separation vector µµµµ = µµµµ1 − µµµµ2 and unknown Σ, which is estimated by Σ̂.
This Σ̂ can also be considered as a ”wrong” value of Σ.
The Bayes Risk of this problem is given by

Φ

(√
µµµµTΣ−1µµµµ

2

)
= Φ

(√
∆

2

)
,

where ∆ = µµµµTΣ−1µµµµ represents the Mahalanobis distance between the two
populations. Misclassification probability for using Σ̂ in place of Σ is

Φ


 µµµµT Σ̂−1µµµµ

2

√
µµµµT Σ̂−1ΣΣ̂−1µµµµ


 = Φ

(√
∆∗
2

)
.

Then, we have the following proposition.

Proposition 3.2.1.

Φ

(√
∆

2

)
≤ Φ

(√
∆∗
2

)
≤ Φ

(
2
√

k

1 + k

√
∆

2

)
,

where k = λmax(R)
λmin(R)

and R is the ratio matrix Σ̂− 1
2ΣΣ̂− 1

2 . Moreover, the lower

bound is attained when µµµµ is any eigenvector of ΣΣ̂−1, whereas the upper
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bound is attained when µµµµ = c(u + v), where u and v are two eigenvectors of
ΣΣ̂−1 corresponding to the largest and the smallest eigenvalues.

Proof. To compare the Bayes risk and the future misclassification probabil-
ity, we consider the ratio of the corresponding arguments of the Φ function.

√
∆
2√
∆∗
2

=

√
µµµµT Σ̂−1ΣΣ̂−1µµµµ

√
µµµµTΣ−1µµµµ

µµµµT Σ̂−1µµµµ

=

√
ννTRνν

√
ννTR−1νν

ννT νν
=r (say),

where νν = Σ̂− 1
2 µµµµ and R = Σ̂− 1

2ΣΣ̂− 1
2 . Now, by Kantorovich inequality

r ≤ λmax(R) + λmin(R)

2
√

λmax(R)λmin(R)
=

1 + k

2
√

k
,

where k = λmax(R)/λmin(R). Again, by Cauchy-Schwartz inequality,
r ≥ 1. To see this, consider the spectral decomposition of R. Let

R = PΛP T

νν = Pαα,

where Λ = Diag(λ1, . . . , λp) with λ1 ≥ . . . ≥ λp and ααT = (α1, . . . , αp). Then

r2 =

∑p
i=1 λiα

2
i

∑p
i=1

1
λi

α2
i

(
∑p

i=1 α2
i )

2 ≥ 1 (by Cauchy Schwartz Inequality).

Combining (3.2.1) and (3.2.1)

1 ≤ r ≤ 1 + k

2
√

k
.

Hence

Φ

(√
∆

2

)
≤ Φ

(√
∆∗
2

)
≤ Φ

(
2
√

k

1 + k

√
∆

2

)
.

It is important to note that both bounds of r are attainable for suitable µµµµ’s.
For example, if νν = c(u + v), where c is any constant, u and v are two
eigenvectors of R corresponding to λ1 and λp respectively (or equivalently,

µµµµ = c(u + v), where c is any constant, u and v are two eigenvectors of ΣΣ̂−1

corresponding to λ1 and λp respectively), then r = (1+k)/2
√

k. On the other
hand, when νν is an eigenvector of R (or equivalently, µµµµ is an eigenvector of
ΣΣ̂−1), then r = 1. ¤
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So, we never gain by using a ”wrong” Σ, unlike what happens if ”wrong”
µµ is used. The amount of loss heavily depends on the orientation of the
mean-separation vector µµµµ w.r.t the ratio matrix R. The worst possible mis-
classification probability depends on k, which acts as a measure of error for
using Σ̂ instead of Σ, and it approaches 1

2
as k →∞ irrespective of ∆. If R

has many distinct pairs of eigenvalues with high ratio, for each of the pairs
there will be a possible direction of νν leading to high misclassification prob-
ability. The ideal case is k = 1, when Σ̂ needs to be a multiple of Σ.
On the other hand, if νν happens to be an eigenvector of R, or equivalently
µµµµ turns out to be an eigenvector of Σ̂Σ−1 (or equivalently of ΣΣ̂−1), we do
not loose at all. So, if R has large eigenvalues with high multiplicity, then it
is more likely to have low misclassification probability. In the ideal case, R
has only one distinct eigenvalue, which is possible if Σ̂ is a multiple of Σ.

3.2.2 Some special Cases

Now, let us have a look at some special cases of Σ and Σ̂.

1. When Σ has the intraclass correlation structure with correlation ρ,
and Σ̂ = Diag(Σ), then k = (1 + p ρ

1−ρ
) is the condition number of the

true correlation matrix, which goes to ∞ as the correlation approaches
1 or p → ∞ . We know that any contrast and the vector of ones
are eigenvectors of the correlation matrix. Now, the mean-separation
vector µµµµ can be written as

µµµµ =
√

pµµµµ

(
1√
p
1

)
+

√√√√
p∑

i=1

(µµµµi − µµµµ)2 (µµµµ− µµµµ1) .

So, the worst µµµµ is that for which
√

pµµµµ =
√∑p

i=1(µµµµi − µµµµ)2 or equiv-
alently coefficient of variation of the vector µµ is 1. Performance of
Diag(Σ) improves as the coefficient of variation goes away from 1 in
either direction.

2. When both Σ and Σ̂ have intra-class correlation structure with corre-
lations ρ and ρ̂ respectively, then

Σ = (1− ρ)Ip + ρ11T

and Σ̂ = (1− ρ̂)Ip + ρ̂11T

can be assumed to have the same set of eigenvectors. So, Σ = PΛPT

and Σ̂ = PΛ̂PT , where Λ = Diag(1 + p− 1ρ, 1 − ρ, . . . , 1 − ρ) and
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Λ̂ = Diag(1+p− 1ρ̂, 1− ρ̂, . . . , 1− ρ̂). Hence, ΣΣ̂−1 = PΛΛ̂−1PT , and
k = λmax(R)/λmin(R) = λmax(ΣΣ̂−1)/λmin(ΣΣ̂−1) = (1 + p− 1ρ)(1 +
p− 1ρ̂)−1(1−ρ)(1− ρ̂)−1 or (1−ρ)(1− ρ̂)−1(1+ p− 1ρ)(1+ p− 1ρ̂)−1.
So, when ρ and ρ̂ are near to each other, then r will not be very high.

3. One major problem of high dimensional classification problem is accu-
rate estimation of small eigenvalues of Σ. In the classical estimate of
Σ, these eigenvalues are underestimated. To cope with this problem,
if we replace the small eigenvalues by a small number ε, that may lead
to another regularization. To study this regularization, we now con-
sider the best case scenario in this approach i.e., the case when all the
eigenvalues except the small ones and all the eigenvectors have been
correctly estimated. So, then Σ = PΛPT and Σ̂ = PΛ̂PT , where,
Λ = Diag(λ1, . . . , λt, λt+1, . . . , λp) and Λ̂ = Diag(λ1, . . . , λt, ε, . . . , ε).

Hence, ΣΣ̂−1 = PΛΛ̂−1PT , and k = λmax(ΣΣ̂−1)/λmin(ΣΣ̂−1) =
max(1,λt+1/ε,...,λp/ε)

min(1,λt+1/ε,...,λp/ε)
. Clearly, k ≥ λt+1/ε

λp/ε
= λt+1

λp
. So, if the small eigenval-

ues maintain very high ratio between them, k can still be large for any
choice of ε.

4. When Σ is block-diagonal matrix with blocks having intraclass corre-
lation structures i.e.,

Σ =

[
(1− γ)Ip + γJp 0

0 (1− γ)Ip + γJp

]

and we estimate it by

Σ̂ = (1− ρ)I2p + ρJ2p,

then the matrix ΣΣ̂−1 equals Σ(aI2p + bJ2p, where a = 1/(1− ρ) and
b = −ρ/{(1− ρ)(1 + 2p− 1ρ)}. So,

ΣΣ̂−1 = aΣ + bΣJ2p = a(1− γ)I2p + aγK + b(1 + p− 1γ)J2p,

where

K =

[
Jp 0
0 Jp

]
.

So, the distinct eigenvalues of ΣΣ̂−1 are a(1 − γ), (1 + p− 1γ)(a +
2pb), a(1+ p− 1γ), as the distinct eigenvalues of cK+dJ2p are 0, p(c+

2d), pc. Putting the values of a and b, the eigenvalues of ΣΣ̂−1 are
1−γ
1−ρ

, 1+p−1γ
1+2p−1ρ

and 1+p−1γ
1−ρ

. The first two are the ratio of comparable

eigenvalues of Σ and Σ̂, but the third one can be very high if p is large
leading to a very high value of k.
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3.2.3 Singular Σ̂

When Σ̂, the estimate of Σ, is singular, which is quite likely in case of
high dimensional classification problems, the linear discriminant score is not
well defined, because Σ̂−1 is not available. In such situations, generally the
Moore-Penrose g-inverse of Σ̂ is used (Ref. [Bickel & Levina, 2004]) in place
of Σ−1 in the expression of the Bayes classifier. Then the corresponding
misclassification probability is

Φ


 µµT Σ̂−µµ

2

√
µµT Σ̂−ΣΣ̂−µµ




Since, Σ̂ is singular, C
(
Σ̂

)⊥
6= ø So, if µµ ∈ C

(
Σ̂−

)⊥
, the Bayes classifier

µµT Σ̂−(X − (µµ1 + µµ2)/2) = 0, which forces the misclassification probability

to be 1. But C
(
Σ̂

)⊥
is a lower dimensional subspace of Rp. Now, we will

study the effect of using Σ̂− when µµ /∈ C
(
Σ̂−

)⊥
.

Let, Σ̂− = AAT , where A is p × k(k < p) and has full column rank. As
earlier, we will consider the ratio of t he arguments of Φ in the expression
of misclassification probability of the Bayes classifier and the linear classifier
corresponding to Σ̂−. The ratio is

r =

√
µµTAATΣAAT µµ

√
µµTΣ−1µµ

µµTAAT µµ

=

√
uTΣ

1
2 AATΣAATΣ

1
2u
√

uTu

uTΣ
1
2 AATΣ

1
2u

(where u = Σ− 1
2 µµ)

=

√
uTBBTBBTu

√
uTu

uTBBTu
(where B = Σ

1
2A).
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Let us split u into two components u1 and u2 such that u = u1 ⊕ u2 and
u1 ∈ c(B),u2 ∈ c(B)⊥. Then

r2 =
uT

1 BBTBBTu1.(u
T
1 u1 + uT

2 u2)

uT
1 BBTu1

(as, u1 ⊥ u2,u
Tu = uT

1 u1 + uT
2 u2)

=
uT

1 BBTBBTu1.u
T
1 u1

uT
1 BBTu1

uT
1 u1 + uT

2 u2

uT
1 u1

=
vT (BTB)v.vT (BTB)−1v

vT v

uT
1 u1 + uT

2 u2

uT
1 u1

[as u1 ∈ C(B), (say), u1 = B(BTB)−1v]

=
vT (ATΣA)v.vT (ATΣA)−1v

vT v

uT
1 u1 + uT

2 u2

uT
1 u1

(as B = Σ
1
2A)

≤K
uT

1 u1 + uT
2 u2

uT
1 u1

[
whereK =

2
√

k

1 + k
and k =

λmax(A
TΣA)

λmin(ATΣA)

]
.

The upper bound of the first term is attainable, but the second term is
unbounded. So r2 can achieve any value in (0,∞). Hence when Σ̂ is singular,
the misclassification probability can take any value up to .5.
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Chapter 4

A New Method of
Regularization

In the case of high dimensional data, generally the covariance matrix Σ is reg-
ularized by imposing some restrictions on it (e.g., by ignoring all correlations
or assuming all correlations to be equal). A more flexible form of regulariza-
tion is obtained by considering a convex combination of sample covariance
matrix Σ̂ and the MLE of Σ under the restrictions mentioned. However, in
the expression of the linear classifier, (µµ1 − µµ2)

TΣ−1(X − (µµ1 + µµ2)/2), the
contribution of Σ is through Σ−1. So, a reasonable choice of regularization
is to consider a convex combination of Σ̂−1 (or Σ̂− if Σ̂ is singular) and the
inverse of the MLE of Σ under different restrictions. In this chapter, we
will study the performance of this kind of regularization. The choice of the
generalized inverse should not matter as it is used only in a quadratic form
that is invariant under this choice. In order to avoid confusion, we use Σ̂+,
the Moore-Penrose generalized inverse in the rest of this dissertation.

4.1 Optimal Linear Combination of Two Σ−1-

estimates

Let us consider two estimators of Σ, namely Σ̂1 and Σ̂2, and we will consider
a linear combination of Σ̂+

1 and Σ̂+
2 , λ1Σ̂

+
1 + λ2Σ̂

+
2 in place of Σ−1 in the

expression of the linear classifier. Since, we are concentrating on regulariza-
tion of Σ, we will assume that the mean separation vector µµ to be known.
We define S (Σ̂1, Σ̂2) to be the set of all linear classifier with Σ−1 replaced
by λ1Σ̂

+
1 + λ2Σ̂

+
2 for λ1, λ2 ∈ R
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Proposition 4.1.1. For the classification problem with two populations and
known mean-separation vector, for any two estimators Σ̂1 and Σ̂2 of Σ, the
misclassification probability of the optimal classifier in the class S(Σ̂1, Σ̂2) is
given by

Φ




√
‖PY(x)‖2

2


 , (4.1.1)

where x = Σ− 1
2 µµ,Y =

[
y z

]
for y = Σ

1
2 Σ̂+

1 µµ, z = Σ
1
2 Σ̂+

2 µµ. Here, PY is
the projection operator into the column-space of Y.

Proof. Misclassification probability for using Σ̂+
1 and Σ̂+

2 are Φ
[

a(Σ̂1)
2

]
and

Φ
[

a(Σ̂2)
2

]
respectively, where

a(Σ̂1) =
µµT Σ̂+

1 µµ√
µµT Σ̂+

1 ΣΣ̂+
1 µµ

=
(µµTΣ− 1

2 )(Σ
1
2 Σ̂+

1 µµ)√
(µµT Σ̂+

1 Σ
1
2 )(Σ

1
2 Σ̂+

1 µµ)
=

xTy√
yTy

, (4.1.2)

and

a(Σ̂2) =
µµT Σ̂+

2 µµ√
µµT Σ̂+

2 ΣΣ̂+
2 µµ

=
(µµTΣ− 1

2 )(Σ
1
2 Σ̂+

2 µµ)√
(µµT Σ̂+

2 Σ
1
2 )(Σ

1
2 Σ̂+

2 µµ)
=

xTz√
zTz

, (4.1.3)

and x = Σ− 1
2 µµ,y = Σ

1
2 Σ̂+

1 µµ, z = Σ
1
2 Σ̂+

2 µµ. When λ1Σ̂
+
1 + λ2Σ̂

+
2 is used

as an estimate of Σ−1, the resulting misclassification probability will be

Φ
[

f(λ1,λ2)
2

]
, where

f(λ1, λ2) =
xT (λ1y + λ2z)√

(λ1y + λ2z)T (λ1y + λ2z)
. (4.1.4)

So,

f 2(λ1, λ2) =
(λλTd)2

λλTAλλ

[
where λλ =

(
λ1

λ2

)
,d =

(
xTy
xTz

)
and A =

(
yTy yTz
yTz zTz

)]

≤dTA−1d

=xTY(YTY)−1YTx
[
as d = YTx,A = YTY

]

=‖PY(x)‖2. (4.1.5)

Equality holds when λλ ∝ A−1d. Hence, the optimal classifier in the class

S (Σ̂1, Σ̂2) has misclassification probability Φ

(√
‖PY(x)‖2

2

)
. ¤
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But the optimal λλ may not correspond to a convex combination of Σ̂+
1 and

Σ̂+
2 unless both the components of A−1d have the same sign. However, for

this optimal λλ, we get a linear classifier, where the matrix multiplying x
is possibly not n.n.d, with misclassification probability smaller than that of
both Σ̂1 and Σ̂2.

4.2 Optimal Convex Combination of Two Σ−1-

estimates

It will be interesting to know the condition which makes the optimal linear
combination a convex combination. The next proposition gives a necessary
and sufficient condition for a convex combination to be an optimal classifier.

Proposition 4.2.1. The necessary and sufficient condition for a proper
convex combination of Σ̂+

1 and Σ̂+
2 to be an optimal classifier in the class

S(Σ̂+
1 , Σ̂+

2 ) is

µµT Σ̂+
1 ΣΣ̂+

2 µµ

µµT Σ̂+
2 ΣΣ̂+

2 µµ
<

µµT Σ̂+
1 µµ

µµT Σ̂+
2 µµ

<
µµT Σ̂+

1 ΣΣ̂+
1 µµ

µµT Σ̂+
1 ΣΣ̂+

2 µµ
(4.2.1)

Moreover, violation of the right-inequality (or left-inequality) will force Σ̂+
1

(or Σ̂+
2 ) to be the best among the convex combinations os Σ̂−

1 and Σ̂−
2

Proof. We observe that if we consider the change of variable λ1

λ2
= u, then

f 2(λ1, λ2) =
λ2

1d
2
1 + 2λ1λ2d1d2 + λ2

2d
2
2

λ2
1a11 + 2λ1λ2a12 + λ2

2a22

(4.2.2)

[where d = (d1, d2)
T and A = ((aij))]

=
u2d2

1 + 2ud1d2 + d2
2

u2a11 + 2ua12 + a22

=
g(u)

h(u)
(say). (4.2.3)

The optimal λ will correspond to a convex combination if the maximum of
g(u)
h(u)

is nonnegative. To find the maximum of f 2(λ1, λ2), we put ∂
∂u

[
g(u)
h(u)

]
= 0.
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Now,

∂

∂u

[
g(u)

h(u)

]
=

h(u)g
′
(u)− g(u)h

′
(u)

h2(u)

=
[a12d

2
1 − a11d1d2]u

2 + [a22d
2
1 − a11d

2
2]u + [a22d1d2 − a12d

2
2]

h2(u)

=
q(u)

h2(u)
(say). (4.2.4)

So, we need to find the zeros of the quadratic equation q(u) = 0. The
discriminant of this quadratic equation is

[a22d
2
1 − a11d

2
2]

2 − 4[a12d
2
1 − a11d1d2][a22d1d2 − a12d

2
2]

=[a22d
2
1 − a11d

2
2]

2 + 4[a11a22 + a2
12]d

2
1d

2
2 − 4a12d1d2[a22d

2
1 + a11d

2
2]

≥[a22d
2
1 − a11d

2
2]

2 + 4[2
√

a11a22a12]d
2
1d

2
2 − 4a12d1d2[a22d

2
1 + a11d

2
2]

(By A.M-G.M inequality a11a22 + a2
12 ≥ 2

√
a11a22|a12| and |a12| ≥ a12)

=[a22d
2
1 − a11d

2
2]

2 − 4a12d1d2[
√

a22d1 −√a11d2]
2

=[a22d
2
1 − a11d

2
2]

2 − 4
√

a11a22d1d2[
√

a22d1 −√a11d2]
2 (as a12 ≤ |a12| ≤ √

a11a22)

=[
√

a22d1 −√a11d2]
2([
√

a22d1 +
√

a11d2]
2 − 4

√
a11a22d1d2)

=[
√

a22d1 −√a11d2]
4

≥0 (4.2.5)

This derivation shows that the discriminant of q(u) is always positive unless
|A| = 0 and d1√

a11
= d2√

a22
; which is a very improbable condition. So, we as-

sume that the discriminant is positive and hence q(u) has two distinct roots,
which correspond to the maximum and the minimum of f 2(λ1, λ2). The op-
timal λ1, λ2 will have the same sign, when the root of q(u) corresponding to
the maximum of f 2(λ1, λ2) is nonnegative.

Next, we observe that if the coefficient of u2 in q(u) is nonnegative, i.e.,

a12d
2
1 − a11d1d2 ≥ 0

⇒a12 ≥ a11
d2

d1

(as d1, d2 > 0)

⇒a22
d1

d2

> a12 (as otherwise a11
d2

d1

, a22
d1

d2

≤ a12 ⇒ a11a22 ≤ a2
12, which is false)

⇒a22
d1

d2

> a12 ≥ a11
d2

d1

⇒a22d
2
1 − a11d

2
2 > 0 and a22d1d2 − a12d

2
2 > 0. (4.2.6)
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Then, all coefficients in q(u) are positive, which implies that both the roots
of q(u) are nonpositive and q(u) > 0 on (o,∞). So, f 2(λ1, λ2) (under the
restriction λ1, λ2 have the same sign) attains its maximum at λ2 = 0 (i.e.,
u = ∞). So, in this case Σ̂+

1 is the best among all the convex combinations
of Σ̂+

1 and Σ̂+
2 . Similarly, when the coefficient of u2 in q(u) is negative,

i.e., a12 < a11
d2

d1
, and also the constant term is nonpositive, i.e., a12 ≤ a11

d2

d1

then all coefficients of q(u) are negative, which means that both the roots
of q(u) are nonpositive and q(u) < 0 on (0,∞). So, f 2(λ1, λ2) (under the
same restriction) attains the maximum at λ1 = 0 (i.e. u = 0). Then, Σ̂+

2 is
the best among all convex combinations of Σ̂+

1 and Σ̂+
2 . Excluding these two

cases, f 2(λ1, λ2) will attain its maximum for some λ1, λ2 having the same sign
(i.e., some matrix, which is a strict convex combination of Σ̂+

1 and Σ̂+
2 , will

be the best) because larger root of q(u), which corresponds to the maximum

of g(u)
h(u)

, is positive. Hence, a necessary and sufficient condition for a strict

convex combination of Σ̂+
1 and Σ̂+

2 to be the best, us the following

a12d
2
1 − a11d1d2 < 0 and a22d1d2 > a12d

2
2

⇔ a12 < a11
d2

d1

, a22
d1

d2

⇔ a12

a22

<
d1

d2

<
a11

a12

⇔ µµT Σ̂+
1 ΣΣ̂+

2 µµ

µµT Σ̂+
2 ΣΣ̂+

2 µµ
<

µµT Σ̂+
1 µµ

µµT Σ̂+
2 µµ

<
µµT Σ̂+

1 ΣΣ̂+
1 µµ

µµT Σ̂+
1 ΣΣ̂+

2 µµ
. (4.2.7)

If the right-inequality is violated, then a12d1 ≥ a11d2, which implies the
coefficient of u2 in q(u) is nonnegative, which forces Σ̂+

1 to be the best (as
shown earlier). Similarly, if the left-inequality is violated, then the coefficient
of u2 and the constant term in q(u) are nonpositive, and hence Σ̂+

2 is forced
to be the best (as shown earlier). As d1

d2
goes away from a11

a12
towards a12

a22
, the

optimal classifier in the class S (Σ̂1, Σ̂2) moves away from that corresponding
to Σ̂+

1 towards the classifier corresponding to Σ̂+
2 and vice versa. ¤

In the next subsection we give illustrations which favor moving away from
sample covariance matrix towards the corresponding diagonal or intra-class
correlation matrix in our shrinkage method, considered in this section.
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4.3 Illustrations Favoring Shrinkage Methods

In the case of high dimensional classification problems, the difficulty lies
mostly in estimating the correlation matrix properly. So, if the true Σ =
DRD, where R is the true correlation matrix and D is a diagonal matrix
consisting of the standard deviations, and the sample based covariance matrix
is Σ̂ = D̂R̂D̂, where R̂ and D̂ are the corresponding estimates, in most of
the high dimensional situations D̂ is reasonably close to D, But R̂ is away
from R (both in terms of eigenvalues and eigenvectors). Also, sometimes R̂
has rank deficiency. The best possible scenario will be D̂ = D and R̂ = R+,
where R+ is a lower rank approximation of R (i.e R+ has all eigenvalues and
eigenvectors same as those of R except few small eigenvalues, which are zeros
for R+ but positive for R). In this section, we will consider this special case
and study the behavior of the discussed shrinkage estimates of dispersion
matrix and the associated classifiers.

4.3.1 Shrinkage Towards Diagonal Matrix

In this section, we will consider the shrinkage towards Diag(Σ̂), i.e., a di-
agonal matrix with diagonal entries same as those of Σ̂. If the spectral
decomposition of R is R = PΛPT , then R̂ = R+ = PΛ+PT , where Λ =
Diag(λ1, . . . , λp), and Λ+ = Diag(λ1, . . . , λk, 0, . . . , 0) for some 1 ≤ k ≤ p−1.
In this situation,

µµT Σ̂−ΣΣ̂−µµ

=µµTD−1R−
+D−1DRDD−1R−

+D−1µµ

=µµT (D−1PΛ−
+PTD−1)(DPΛPTD)(D−1PΛ−

+PTD−1)µµ

=ννTΛ−
+ΛΛ−

+νν (putting νν = PTD−1µµ and using PTP = Ip)

=ννTΛ−
+νν

=
k∑

i=1

1

λi

ν2
i .
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Using similar arguments, we have

µµT Σ̂−µµ = ννTΛ−
+νν =

k∑
i=1

1

λi

ν2
i

µµT D̂−2µµ = ννT νν =

p∑
i=1

ν2
i

µµT D̂−2ΣD̂−2µµ = ννTΛνν =

p∑
i=1

λiν
2
i

µµT D̂−2ΣΣ̂−µµ = ννTΛΛ−
+νν =

k∑
i=1

ν2
i

Now we apply Proposition 4.2.1 with Σ̂1 = Σ̂ and Σ̂2 = D̂2. We observe
that

∑k
i=1

1
λi

ν2
i∑p

i=1 ν2
i

=
µµT Σ̂−µµ

µµT D̂−2µµ
=

d1

d2

<
a11

a12

=
µµT Σ̂−ΣΣ̂−µµ

µµT D̂−2ΣΣ̂−µµ
=

∑k
i=1

1
λi

ν2
i∑k

i=1 ν2
i

. (4.3.1)

So, even if k = p − 1 (i.e., all eigenvectors and eigenvalues of the true
correlation matrix R except only the smallest eigenvalue are known), it is
better to use the discussed shrinkage method towards diagonal matrix, when
Σ is nonsingular and the variances are perfectly estimated.

Next, we notice

a12

a22

<
d1

d2

(4.3.2)

⇔
∑k

i=1 ν2
i∑p

i=1 λiν2
i

<

∑k
i=1

1
λi

ν2
i∑p

i=1 ν2
i

(4.3.3)

⇔
(

k∑
i=1

ν2
i

)(
p∑

i=1

ν2
i

)
<

(
k∑

i=1

1

λi

ν2
i

)(
p∑

i=1

λiν
2
i

)
(4.3.4)

⇔ 0 <
∑

1≤i<j≤k

ν2
i ν

2
j

(
λi

λj

+
λj

λi

− 2

)
+

∑

1≤i≤k<j≤p

ν2
i ν

2
j

(
λj

λi

− 1

)
= S1 + S2 (say).

(4.3.5)

However, S1 is always nonnegative and the second term is always nonpositive.
So, nothing can be said about the above inequality in general. But if we
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impose some restrictions on νis, the inequality will hold. For example, if νis
can be taken to be equal (say, νi ≈ ν ∀i), which means that the separation
of means in different component are approximately the same after suitable
scaling, the above inequality will hold in most of the cases because in that
case

∑

1≤i<j≤k

ν2
i ν

2
j

(
λi

λj

+
λj

λi

− 2

)
+

∑

1≤i≤k<j≤p

ν2
i ν

2
j

(
λj

λi

− 1

)

= ν4

[ ∑

1≤i<j≤k

(
λi

λj

+
λj

λi

− 2

)
+

∑

1≤i≤k<j≤p

(
λj

λi

− 1

)]

≥ ν4

[ ∑

1≤i<j≤k

(
λi

λj

+
λj

λi

− 2

)
− k(p− k)

]
(as 0 ≤ λj

λi

∀i, j),

and all the summands of S1 can be arbitrarily large as the ratio between
the λi’s increases. So, in most of the cases. the S1 will be positive, which
implies in these situations, the optimal linear combination of Σ̂+ and D̂−2

will correspond to a proper convex combination of them.

In another special case, which is rather pathological, if νi ≈ 0, 1 ≤ i ≤ k, then
the inequality in (4.3.5) will not hold and hence the optimal convex combina-
tion will be the diagonal matrix itself. So, in general the convex combination
is either the diagonal matrix itself or some proper convex combination of Σ̂+

and D−2.

4.3.2 Shrinkage Towards An Intra-class Correlation Ma-
trix

Here, we describe a situation where the shrinkage towards an intra-class
correlation matrix is more advantageous than using the usual Σ̂. Let Σ̂C =
D̂ĈD̂ be an estimate of Σ under the restriction that all correlations of Σ are
equal, where Ĉ = (1 − ρ̂)Ip + ρ̂Jp. Under the special case discussed above,

D̂ = D and Σ̂ = DR+D. Next, we observe that

µµT Σ̂−µµ

µµT Σ̂−1
C µµ

<
µµT Σ̂−ΣΣ̂−µµ

µµT Σ̂−1
C ΣΣ̂−µµ

⇔ µµTD−1R−
+D−1µµ

µµTD−1Ĉ−1D−1µµ
<

µµTD−1R−
+RR−

+D−1µµ

µµTD−1Ĉ−1RR−
+D−1µµ

⇔ µµTD−1Ĉ−1D−1µµ > µµTD−1Ĉ−1RR−
+D−1µµ

(as R−
+RR−

+ = PΛ−
+ΛΛ−

+PT = PΛ−
+PT = R−

+). (4.3.6)
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Now, if all components of D−1µµ are approximately equal, which means that
the standardized means are same, then Ĉ−1D−1µµ = λD−1µµ, and hence the
inequality (4.3.6) holds, as

µµTD−1Ĉ−1D−1µµ = λµµTD−2µµ = λµµTD−1PPTD−1µµ = λ

p∑
i=1

ν2
i (where, νν = PTD−1µµ)

> λ

k∑
i=1

ν2
i = λ.ννTΛΛ−

+νν

(
as,ΛΛ−

+ =

[
Ik 0
0 0

])

= λµµTD−1RR−
+D−1µµ = µµTD−1Ĉ−1RR−

+µµ.

So, by Proposition 4.2.1, shrinkage towards Σ̂−1
C away from Σ̂+ is advanta-

geous.

Thus we have obtained some small sample results in favor of regularization
towards diagonal matrix and intra-class correlation matrix. The new shrink-
age method, namely convex combination of the classical estimator of Σ−1

and an estimator with diagonal/intra-class correlation constraint, is quite
promising, as it can reduce the misclassification probability considerably. A
similar result is expected to hold for the convex combination of two estimates
of Σ because both the shrinkage methods (namely, using convex combina-
tions of Σ̂+

1 , Σ̂+
2 in place of Σ−1, and using convex combinations of Σ̂1, Σ̂2

in place of Σ) have the same extremes. So, if one kind of regularization
is better than using the classical estimator, the other type of regularization
should also be a reasonable strategy.
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Chapter 5

Optimization of Variables for
Clustering

As mentioned in section 1.3.2, the clustering problems become difficult, when
the dimension p is large compared to the number of observations. There are
mainly two kinds of problems which may arise because of high dimensionality:
(a) effect of redundant dimensions when the true cluster structure remains
confined to a much lower dimensional subspace, (b) statistical and computa-
tional challenges when data are insufficient relative to dimension. The first
problem has been discussed in this chapter, the second will be addressed in
Chapter 6.

As the simulation study described in the following section indicates, inclusion
of too many noisy variables in the clustering procedure may produce clusters
which differ from the actual ones substantially. For example, all the hierar-
chical clustering methods, which use Euclidean distance as the measure of
dissimilarity, may perform badly in some case. We give a theoretical expla-
nation of this phenomenon in Section 5.3.2 by showing that the presence of
nondiscriminating variables weakens the distance matrix of the observations
in a certain sense, thereby increasing the chances of wrong clusters. In such
situations, dimension reduction strategy may be quite helpful in order to
reduce the error. We give a framework for choosing suitable linear combina-
tions of variables in model based clustering. In the first stage, we show how
one can choose best linear combinations for a given number of such combi-
nations. Then, we develop criteria for determining optimal number of linear
combinations.
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5.1 Difficulty of Clustering in Presence of Noisy

Variables

In case of high dimensional data, if most of the variables are noisy, i.e., less
relevant in the clustering context, and the true cluster structures are present
only in a few variables, the hierarchical clustering methods may not be able
to identify the clusters. For example, if single linkage or average linkage
hierarchical method is used in such situations, it becomes difficult to identify
the groups, even if the corresponding populations are substantially different
from each other in terms of Mahalanobis distance. This phenomenon is
reflected in the following simulation study.

In this study, three normal populations, each of size n = 20 and dimension
p = 60, were considered. The common covariance matrix was the identity
matrix. Separation of means was kept only in the first three components
and in each of the remaining components, the same mean was used for all
the populations. To observe the effect of noisy variables only, mean vectors
of the three populations were suitably chosen to ensure very large Maha-
lanobis distance between the populations. Then average linkage hierarchical
clustering method was used to identify the clusters. The experiment was re-
peated with p = 20 (including three dimensions where the separation of the
population means was confined) and moderately large Mahalanobis distance
between populations.

Results obtained from the simulation study are shown in the Table 5.1.1.
The clusters mentioned in this table are obtained by applying a threshold on
the hierarchical cluster tree that corresponds to exactly three clusters. The
number reported in a ‘cluster’ column and a ‘population’ row is the number
of elements of the cluster coming from that population.
As we learn from the simulation results, presence of too many noisy variables
can create a great problem in recovering the clusters, even if the populations
are sufficiently separated. So, in such situations we need to exclude the noisy
variables and determine the discriminating variables (or more generally the
discriminating directions) before applying any clustering method, in order to
reduce the error.

5.2 Choosing Best Discriminating Linear Com-

binations of Variables

Generally, in order to select a certain number of discriminating linear com-
binations, a suitable criterion is considered. Among the possible candidates,
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Mahalanobis
Distance

Dimension
60 20

P1 P2 P3 Clust1 Clust2 Clust3 Clust1 Clust2 clust3
0 Popul1 20 0 0 Popul1 19 1 0
6 0 Popul2 19 1 0 Popul2 20 0 0
6 7 0 Popul3 19 0 1 Popul3 19 0 1

P1 P2 P3 Clust1 Clust2 Clust3 Clust1 Clust2 Clust3
0 Popul1 19 1 0 Popul1 20 0 0
10 0 Popul2 20 0 0 Popul2 0 20 0
10 11.5 0 Popul3 0 0 20 Popul3 0 0 20

Table 5.1.1: Performance of average linkage hierarchical clustering in simu-
lation

the one which optimizes that criterion is used. In our study, we have con-
sidered the average Mahalanobis distance between two different clusters and
that within one cluster. The ratio of these two average distances was used
as the criterion to optimize.

5.2.1 Model Assumption

In our study, we have considered model based clustering problems. To be
more precise, we have assumed Gaussian clusters, i.e. the cluster means are
i.i.d.

µµi ∼ Np(µµ0,B); i = 1, 2, . . . , K (5.2.1)

and the observations from the ith cluster are i.i.d.

Xij|µµi ∼ Np(µµi,W); j = 1, 2, . . . , Ni (5.2.2)

where B and W are the between-group and within-group covariance matrices
respectively.

In this chapter, we have assumed both B and W to be known. In Chapter 6,
we will discuss the we will discuss the case where B and W are estimated
from past data.

5.2.2 Criterion Function

Let d be the number of linear combinations to be obtained, and L be a p× d
matrix such that LTXij is a vector of d linear combinations of the observation
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vector Xij. We consider the class L of coefficient matrices each containing d
many linear combinations, i.e.,

L = {L : L is p× d}. (5.2.3)

For any L ∈ L, LTXij|µµi ∼N(LT µµi,L
TWL)∀i, j. So, the expected Maha-

lanobis distance between two random observations from the same cluster, if
L is used to transform the data, is

Dii(L) = E
[
(LTXij − LTXij

′ )T (LTWL)−1(LTXij − LTXij
′ )

]
.

The expected Mahalanobis distance between two random observations from
two different clusters, if L is used to transform the data, is

Dii
′ (L) = E

[
(LTXij − LTXi

′
j
′ )T (LTWL)−1(LTXij − LTXi

′
j
′ )

]
.

We choose Lopt ∈ L which maximizes the ratio between the two expected
Mahalanobis distances , i.e.

Dii
′ (Lopt)

Dii(Lopt)
= max

L∈L
Dii

′ (L)

Dii(L)
, (5.2.4)

where i 6= i
′
and i, i

′ ∈ {1, 2, . . . , K}. It is a reasonable and natural criterion
to consider, and the set of ‘optimum’ linear combinations is expected to
perform better than other such sets as discriminating directions.
The following proposition shows that maximizing (5.2.4) is equivalent to
maximizing the criterion function

Ψ(L) = trace[(LTBL)(LTWL)−1] (5.2.5)

with respect to L ∈ L.

Proposition 5.2.1. Lopt ∈ L satisfies

Dii′ (Lopt)

Dii(Lopt)
= max

L∈L
Dii′ (L)

Dii(L)
(5.2.6)

if and only if it satisfies

trace[(LT
optBLopt)(L

T
optWLopt)

−1] = max
L∈L

trace[(LTBL)(LTWL)−1].

(5.2.7)
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Proof. We observe that

Dii(L) =E
[
(LTXij − LTXij′ )

T (LTWL)−1(LTXij − LTXij′ )
]

=E[(Xij −Xij
′ )TL(LTWL)−1LT (Xij −Xij

′ )]

=Eµi
[E{(Xij −Xij

′ )TL(LTWL)−1LT (Xij −Xij
′ )|µµi}]

=Eµi
[ trace{L(LTWL)−1LT 2W}]
[as (Xij −Xij

′ ) ∼N(0, 2W)

and Y ∼N(0,Σ) ⇒E(YTAY) =trace(AΣ) ]

=2Eµi
[ trace{(LTWL)−1LTWL}]

=2d, (5.2.8)

and

Di,i′ =E
[
(LTXij − LTXi′j′ )

T (LTWL)−1(LTXij − LTXi′j′ )
]

=E[(Xij −Xi′j′ )
TL(LTWL)−1LT (Xij −Xi′j′ )]

=Eµi,µi
′ [E{(Xij −Xi′j′ )

TL(LTWL)−1LT (Xij −Xi′j′ )|µµi, µµi′}]
=Eµi,µi

′ [(µµi − µµi′ )
TL(LTWL)−1LT (µµi − µµi′ ) + trace{L(LTWL)−1LT 2W}]

[As (Xij −Xi
′
j
′ ) ∼N(µµi − µµi

′ , 2W)]

=2 trace{L(LTWL)−1LTB}+ 2 trace{(LTWL)−1LTWL}
=2 trace{(LTWL)−1LTBL}+ 2d. (5.2.9)

So, maximizing the ratio of the two average Mahalanobis distances (between-
cluster and within-cluster) is equivalent to maximizing the trace of the ratio
matrix (LTBL)(LTWL)−1. ¤

From another point of view also, we arrive at the same optimization cri-
terion. If L is used to transform the data, the conditional distribution of
the difference of two random observations X and Y from the clusters, is
N(0,LTWL) or N(LT µµi −LT µµi′ ,L

TWL) depending on whether X,Y come
from the same cluster or different clusters, respectively. If we consider the
average Mahalanobis distance between these two populations, that seems to
be a reasonable quantity to maximize. The expected Mahalanobis distance
is

E[(LT µµi − LT µµi
′ )T (LTWL)−1(LT µµi − LT µµi

′ )] = trace[(LTWL)−1(LTBL)],
(5.2.10)

which is the quantity we obtained earlier.

61



5.2.3 Procedure for Choosing Lopt

First, we observe that the criterion function is invariant under nonsingular
transformations, i.e., Ψ(L) = Ψ(LC) for all L ∈ L and for all nonsingular C.
In particular, if Lopt ∈ L maximizes Ψ(·), C can be chosen suitably, namely

C =
(
LT

optWLopt

)−1/2
,

such that L0 = LoptC satisfies LT
0 WL0 = Id and L0 also maximizes Ψ(·). So,

we can get a set of linear combinations L0 such that our criterion function
is maximized, and at the same time, all the components of the transformed
observations are independent, each having variance 1. So we concentrate on
the class

LW = {L ∈ L : LTWL = Id}. (5.2.11)

For L ∈ LW, Ψ(L) = trace(LTBL). In order to understand which choice
of L0 ∈ LW would maximize trace(LTBL), it is better to consider the one-
dimensional situation (i.e., d = 1) first and then extend the technique to
higher dimensions. When d = 1, the above maximization problem is equiv-
alent to maximizing lT Bl

lT Wl
with respect to l ∈ C(W). We know that if

W = PΛPT (where P is p × r and Λ is r × r, rank(W) = r ≤ p) is
the spectral decomposition of W, and if we denote

W−1/2 = P (Λ)−1/2 PT (where Λ−1/2 is the sqare root of Λ−1),
(5.2.12)

then

max
l∈C(W)

lTBl

lTWl
= λmax(BW+) = λmax(W

−1/2BW−1/2) (5.2.13)

and

arg max
l6=0

lTW−1/2BW−1/2l

lT l
= l1 ⇒ arg max

l∈C(W)

lTBl

lTWl
= W−1/2l1, (5.2.14)

as l1 ∈ C(W) = C(P). So, it is natural to expect that, if we consider the
spectral decomposition QDQT of W−1/2BW−1/2, choose the first d columns
of Q and multiply each of them by W−1/2, we should get our desired L0. The
following propositions show that indeed we get the optimizer of trace(LTBL)
in the class LW by the above procedure.
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Proposition 5.2.2. If D is a diagonal matrix with diagonal entries d1 ≥
d2 ≥ . . . ≥ dn, then

max
{Ln×r:LT L=Ir}

trace
(
LTDL

)
=

r∑
i=1

di ∀r, 1 ≤ r ≤ n. (5.2.15)

Equality holds when L consists of first r canonical eigenvectors.

Proof. Let L = [l1, . . . , ln]T .

If LTL = Ir, largest eigenvalue of LLT is 1.

So the ith diagonal entry of LLT , lTi li ≤ 1∀i = 1, 2, . . . n and
∑n

i=1 lTi li =
trace (LLT ) = r. Now

trace
(
LTDL

)
= trace

(
DLLT

)

=
n∑

i=1

dil
T
i li

≤
r∑

i=1

dil
T
i li + dr

n∑
i=r+1

lTi li

=
r∑

i=1

dil
T
i li + dr(r −

r∑
i=1

lTi li)

=
r∑

i=1

(di − dr)l
T
i li + r.dr

=
r∑

i=1

(di − dr) + r.dr

=
r∑

i=1

di. (5.2.16)

Equality holds when L consists of first r unit vectors. ¤
Corollary 5.2.3. For any n.n.d matrix M, under the restriction LTL = Ir,
trace of LTML is maximized when the eigenvectors of M corresponding to
its largest r many eigenvalues are used.

Proof. Consider the spectral decomposition of M, say M = QDQT . For any
L, with LTL = Ir, LTQQTL = LTL = Ir. So,

trace(LTML) = trace(LTQDQTL) ≤
r∑

i=1

di (by Proposition 5.2.2).

(5.2.17)
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Equality holds if QTL = [Ir0]T , or equivalently L = Q[Ir0]T , i.e., L consists
of eigenvectors of M corresponding to its largest r eigenvalues. ¤
Proposition 5.2.4. For any two n.n.d matrices B and W, under the re-
striction LTWL = Id, trace of LTBL is maximized at L0 = W−1/2L1, where
L1 consists of orthogonal eigenvectors of W−1/2BW−1/2 corresponding to its
d many largest eigenvalues.

Proof. Let the eigenvalues of W−1/2BW−1/2 be λ1 ≥ . . . ≥ λp. We note that

LTWL = Id ⇒ LTPΛPTL = Id (5.2.18)

(where W = Pp×rΛr×rP
T is the spectral decomposition.)

⇒ uTu = Id (where L = PΛ−1/2u, assuming L ∈ C(W) )
(5.2.19)

and

LTBL = uTΛ−1/2PTBPΛ−1/2u. (5.2.20)

So,

max
L∈LW

trace(LTBL) = max
uT u=Id

trace(uTΛ−1/2PTBPΛ−1/2u)

= sum of the largest d eigenvalues of Λ− 1
1PTBPΛ−1/2

= sum of the largest d eigenvalues of PΛ− 1
1PTBPΛ−1/2PT (as PTP = Ir)

= sum of the largest d eigenvalues of W−1/2BW−1/2 =
d∑

i=1

λi. (5.2.21)

If L1 = [l1, . . . , ld] consists of the orthogonal eigenvectors of W−1/2BW−1/2

corresponding to λ1, . . . , λd, then LT
1 L1 = Id and lTi W−1/2BW−1/2li = λi for

i = 1, . . . , d. Now, if we take L0 = W−1/2L1, then

LT
0 WL0 = LT

1 W−1/2WW−1/2L1

= LT
1 PPTL1

= LT
1 L1 (as each li ∈ C(W−1/2BW−1/2) ⊆ C(W−1/2) = C(P))

= Id, (5.2.22)

i.e., L0 ∈ LW and

trace(LT
0 BL0) =

d∑
i=1

lTi W−1/2BW−1/2li =
d∑

i=1

λi. (5.2.23)

Hence L0 maximizes trace of LTBL. ¤
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So, from Proposition 5.2.4, we conclude that if B and W are known, in order
to maximize the trace of

[
(LTBL)(LTWL)−1

]
with respect to L ∈ L, it

is enough to consider L0 = W−1/2L1, where L1 consists of the orthogonal
eigenvectors of the ratio matrix W−1/2BW−1/2 corresponding to its leading
d many eigenvalues. As L0 ∈ LW, it is also ensured that all the components
of the transformed observations are conditionally independent, each having
conditional variance 1. So, we may use the Euclidian distance. If we had
considered some other optimal linear combinations, we would have had to
consider the Mahalanobis distance, which is computationally more costly.
Moreover,

LT
0 BL0 = LT

1 W−1/2BW−1/2L1 =




λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λd


 ,

where λ1, λ2, . . . , λd are leading eigenvalues of W−1/2BW−1/2 with λ1 ≥
λ2 ≥ . . . ≥ λd. This means that if L0 is used to transform the data, the
transformed cluster means become independent with decreasing variances.

In general, if QΛQT is the spectral decomposition of W−1/2BW−1/2, where

Λ =




λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λr


 ,

the assertions given in Table 5.2.1 can be concluded.
Once L is chosen as L0, the function Ψ(·) defined in (5.2.5) reduces to

λ1 + λ2 + · · · + λd. Since this is a monotonically increasing function of d, it
cannot be used for selecting the number of linear combinations. We have to
look for some other criterion.

5.3 Number of Linear Combinations to Choose

In the last section, we have seen that if B and W are known, then one can
optimally select d linear combinations of the variables for model-based clus-
tering. However, the number of linear combinations (d) has to be specified.
In this section, we have addressed the important and difficult problem of
choosing the optimal number of linear combinations.
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The data can be transformed suitably such that

• the transformed within-group variation matrix is the identity
matrix i.e., all components of the transformed observations are
conditionally independent with conditional variance 1;

• the transformed between-group variation matrix is a diagonal
matrix with decreasing diagonal entries i.e., all components of
the transformed cluster means are independent with decreasing
variances; and

• for any d, 1 ≤ d ≤ r, the first d components of the transformed
observations correspond to the optimal d many linear comb-
-inations according to the optimality criterion (5.2.5).

Table 5.2.1: Summary of section 5.2

5.3.1 Criterion for Choosing

We need to develop a suitable criterion in order to compare the performance
of the optimal sets of linear combinations corresponding to several d’s. In
view of Table 5.2.1, the within-group dispersion matrix W can be assumed
to be the identity matrix Ip, and the between-group dispersion matrix B can
be assumed to be a diagonal matrix with decreasing diagonal entries, say

B =




b1 0 . . . 0
0 b2 . . . 0
...

...
. . .

...
0 0 . . . bp


 , where b1 ≥ b2 ≥ . . . ≥ bp. (5.3.1)

We have to choose one among the p many competing subsets of variables,
namely the subsets consisting of the first d many variables (1 ≤ d ≤ p).
Since W = Ip, Euclidean distance between the observations is a reasonable
measure of dissimilarity.

Consider a hypothetical data set where group identities of all the clusters
are known. If the observations are ordered such that the observations corre-
sponding to the ith cluster are placed ahead of those corresponding to the

jth cluster whenever i < j, then the distance matrix of the observations has
the structure shown in Figure 5.3.1. The expected distance matrix shown in
Figure 5.3.2 has the interesting feature that the between-cluster entries al-
ways exceed the within-cluster ones. Any reasonable clustering method used
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on the (unconditional) expected distance matrix would yield correct clusters,
irrespective of which set of variables is used.

Figure 5.3.1: Partitioned Distance Matrix1

In practice, a random distance matrix does not have the above property.
However, comparison with the expected distance matrix suggests that a dis-
tance matrix will be more amenable for correct clustering, if between-cluster
distances are generally greater than the within-cluster distances with high
probability.
Keeping this in mind, we have considered the probability of the random
event that between-cluster Euclidean distance is larger than within-cluster
Euclidean distance, as the criterion function for selecting d. To be more

precise, if Xij = (Xij1, Xij2, . . . , Xijp)
T denote the jth observation from the

ith cluster and if

Xd
ij = (Xij1, Xij2, . . . , Xijd)

T , (5.3.2)

then, we take our criterion function Γ(d) as

Γ(d) = P
[∥∥Xd

11 −Xd
21

∥∥2
>

∥∥Xd
11 −Xd

12

∥∥2
]
. (5.3.3)

In the above expression, Xd
11 occurs in both sides of the inequality. This

corresponds to elements occurring on the same row or column of the matrix
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(a) (b)

Figure 5.3.2: (a) Expected distance matrix – conditional on the cluster means
(b) Expected distance matrix – unconditional

of Figure 5.3.1. For comparison of other pairs of elements of the distance
matrix, we consider the additional criterion function

Γ
′
(d) = P

[∥∥Xd
11 −Xd

21

∥∥2
>

∥∥Xd
13 −Xd

12

∥∥2
]
. (5.3.4)

We may maximize Γ(d) and Γ′(d) with respect to d, and choose the smaller
of the two maximizers for parsimony.
Note that, the expected distance between elements of different clusters is al-
ways more than that between elements of the same cluster, and the (positive)
difference is a non-decreasing function of the number of dimensions. There-
fore, the expected distance matrix could not possibly be used for selecting
d. In the next section, we demonstrate that the suggested criterion has an
in-built penalty for redundant dimensions.

5.3.2 Ill Effects of Nondiscriminating Variables

We now proceed to give a theoretical confirmation of the notion that vari-
ables which do not differ across clusters, can only make the distance matrix
less suitable for correct clustering – in a probabilistic sense. We show that
Γ(·) and Γ′(·) decrease if such noisy variables are included in the cluster-
ing procedure. The main result – Proposition 5.3.5 – would follow from the
following proposition.

Proposition 5.3.1. If for i = 1, 2 and j = 1, 2, 3
(
Xij

Yij

)
∼ N

[(
µµi

νν

)
,

(
Id 0
0 Ir

)]
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then

(1) P
[‖X21 −X11‖2 > ‖X12 −X13‖2]

> P

[∥∥∥∥
(
X21

Y21

)
−

(
X11

Y11

)∥∥∥∥
2

>

∥∥∥∥
(
X12

Y12

)
−

(
X13

Y13

)∥∥∥∥
2
]

;

(2) P
[‖X21 −X11‖2 > ‖X12 −X11‖2]

> P

[∥∥∥∥
(
X21

Y21

)
−

(
X11

Y11

)∥∥∥∥
2

>

∥∥∥∥
(
X12

Y12

)
−

(
X11

Y11

)∥∥∥∥
2
]

.

In order to prove the stated result, we need to develop a series of lemmas
that follow.

Let X = {X : X has density f(·) satisfying f(x) > f(−x) ∀ x > 0}.
Lemma 5.3.2. If X, Y ∈ X and they are independent, then XY ∈ X.

Proof. Suppose that X and Y have densities f(·) and g(·), respectively. If
XY has density h(·), then

h(u) =

∫ ∞

−∞
f

(u

s

)
·g(s)

1

|s| ds =

∫ ∞

0

[
f

(u

s

)
· g(s) + f

(
−u

s

)
· g(−s)

] 1

|s| ds.

So, for any u > 0,

h(u)− h(−u) =

∫ ∞

0

[
f

(u

s

)
− f

(
−u

s

)]
· [g(s)− g(−s)]

1

|s| ds > 0

as X, Y ∈ X. Hence, XY ∈ X. ¤

Lemma 5.3.3. If

(1) X ∈ X ,

(2) Y is unimodal and symmetric about 0 with support R, and

(3) X and Y are independent,

then, X + Y ∈ X.

Proof. Suppose that X and Y have densities f(·) and g(·), respectively.
Then, f(x) > f(−x) ∀ x > 0 and g(y1) ≥ g(y2), whenever 0 ≤ y1 < y2.
If X + Y has density h(·), then

h(u) =

∫ ∞

−∞
f(s) · g(u− s)ds =

∫ ∞

0

[f(s) · g(u− s) + f(−s) · g(u + s)] ds,
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and

h(−u) =

∫ ∞

0

[f(s) · g(−u− s) + f(−s) · g(−u + s)] ds

=

∫ ∞

0

[f(s) · g(u + s) + f(−s) · g(u− s)] ds.

So, for any u > 0,

h(u)− h(−u) =

∫ ∞

0

[f(s)− f(−s)] · [g(u− s)− g(u + s)]ds > 0,

as g(u− s) = g(|u− s|) ≥ g(u + s) and f(s) > f(−s) for all u, s > 0. ¤

Lemma 5.3.4. If

(1) X ∈ X ,

(2) Y is symmetric about 0, and

(3) X and Y are independent,

then, P [X > 0] > P [X + Y > 0].

Proof. Suppose that X has density f(·) with distribution function F (·).
Then,

[F (x) + F (−x)]′ = f(x)− f(−x)





> 0 if x > 0

= 0 if x = 0

< 0 if x < 0.

So, 0 is the global minimum of the function F (x) + F (−x). Now, if g(·) is
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the density of Y , then

P [X + Y > 0] =

∫ ∞

−∞
P [X + y > 0|Y = y] · g(y)dy

=

∫ ∞

−∞
P [X + y > 0] · g(y)dy (using independence)

=1−
∫ ∞

−∞
P [X + y ≤ 0] · g(y)dy

=1−
∫ ∞

−∞
F (−y) · g(y)dy

=1−
∫ ∞

0

[F (y) + F (−y)] · g(y)dy [as g(−y) = g(y)∀y]

<1−
∫ ∞

0

2F (0) · g(y)dy (using the global minimum)

=1− 2F (0).
1

2
(using symmetry of g(·) about 0)

=1− F (0) = P [X > 0].

Hence, the inequality follows. ¤

Using the above Lemmas we can prove Proposition 5.3.1.

Proof of Proposition 5.3.1. Suppose that µµ = µµ1 − µµ2. Then

(
W1

Z1

)
=

(
X21 −X11

Y21 −Y11

)
∼ N

[(
µµ
0

)
,

(
2Id 0
0 2Ir

)]

and
(
W2

Z2

)
=

(
X12 −X13

Y12 −Y13

)
∼ N

[(
0d

0r

)
,

(
2Id 0
0 2Ir

)]
,

with

cov

[(
W1

Z1

)
,

(
W2

Z2

)]
= 0d+r,d+r.

Let A be a d × d orthogonal matrix, such that the first row is proportional
to µµ. Now, if

(
Uk

Vk

)
=

(
A 0
0 Ir

) (
Wk

Zk

)
, for k = 1, 2
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then
(
U1

V1

)
∼ N

[((
δ

0d−1

)

0r

)
,

(
2Id 0
0 2Ir

)]
;

(
U2

V2

)
∼ N

[(
0
0

)
,

(
2Id 0
0 2Ir

)]

with δ = ‖µµ‖ and

cov

[(
U1

V1

)
,

(
U2

V2

)]
= 0d+r,d+r.

Since
∥∥Uk

∥∥2
=

∥∥W k
∥∥2

and Vk = Zk for k = 1, 2, we need to show that

P
[∥∥U1

∥∥2 −
∥∥U2

∥∥2
> 0

]
> P

[∥∥U1
∥∥2 −

∥∥U2
∥∥2

+
∥∥V1

∥∥2 −
∥∥V2

∥∥2
> 0

]

(5.3.5)

Now, we observe that
(
U1

1

U2
1

)
∼ N

[(
δ
0

)
,

(
2 0
0 2

)]
.

Hence, (
U1

1 + U2
1

U1
1 −U2

1

)
∼ N

[(
δ
δ

)
,

(
4 0
0 4

)]
.

It is easy to see that U1
1 + U2

1,U
1
1 −U2

1 ∈ X as δ > 0. So, by Lemma 5.3.2,
we get

(U1
1)

2 − (U2
1)

2 = (U1
1 + U2

1)(U
1
1 −U2

1) ∈ X.

Next, we observe that for k = 2, . . . , d,
(
U1

k

U2
k

)
∼ N

[(
0
0

)
,

(
2 0
0 2

)]
and

(
U1

k + U2
k

U1
k −U2

k

)
∼ N

[(
0
0

)
,

(
4 0
0 4

)]
,

which imply that for each k = 2, . . . , d, (U1
k)

2 − (U2
k)

2 is symmetric about 0

and is unimodal and hence so is
∑d

k=2 [(U1
k)

2 − (U2
k)

2]. Also its support is

R. Hence, by using Lemma 5.3.3, it can be concluded that ‖U1‖2−‖U2‖2
=∑d

k=1 [(U1
k)

2 − (U2
k)

2] ∈ X. Finally, since (V1,V2) has the same distribution

as (V2,V1), it follows that ‖V1‖2 − ‖V2‖2
is symmetric about 0, and is

independent of ‖U1‖2 − ‖U2‖2
. Hence, (5.3.5) follows from Lemma 5.3.4.

The second assertion follows by a similar argument. If we take µµ and A as
in the earlier case, and define
(
U1

V1

)
=

(
A 0
0 Ir

)(
X21 −X11

Y21 −Y11

)
and

(
U2

V2

)
=

(
A 0
0 Ir

)(
X12 −X11

Y12 −Y11

)
,
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then
(
U1

V1

)
∼ N

[((
δ

0d−1

)

0r

)
,

(
2Id 0
0 2Ir

)] (
U2

V2

)
∼ N

[(
0
0

)
,

(
2Id 0
0 2Ir

)]

with δ = ‖µµ‖ and

cov

[(
U1

V1

)
,

(
U2

V2

)]
= Id+r.

As earlier, we need to show that equation (5.3.5) holds. In this case,

(
U1

1

U2
1

)
∼ N

[(
δ
0

)
,

(
2 1
1 2

)]
.

Hence, (
U1

1 + U2
1

U1
1 −U2

1

)
∼ N

[(
δ
δ

)
,

(
6 0
0 2

)]
.

It is easy to see that U1
1 + U2

1,U
1
1 −U2

1 ∈ X as δ > 0. So, by Lemma 5.3.2,

(U1
1)

2 − (U2
1)

2 = (U1
1 + U2

1)(U
1
1 −U2

1) ∈ X.

Next, we observe that for k = 2, . . . , d,

(
U1

k

U2
k

)
∼ N

[(
0
0

)
,

(
2 1
1 2

)]
and

(
U1

k + U2
k

U1
k −U2

k

)
∼ N

[(
0
0

)
,

(
6 0
0 2

)]
,

which imply that for each k = 2, . . . , d, (U1
k)

2 − (U2
k)

2 is symmetric about
0 and is unimodal. Since symmetry and unimodality are preserved under
convolution,

∑d
k=2 [(U1

k)
2 − (U2

k)
2] is symmetric about 0 and is unimodal

with support R. Again, for each k = 1, . . . , d,

(
V1

k

V2
k

)
∼ N

[(
0
0

)
,

(
2 1
1 2

)]
and

(
V1

k + V2
k

U1
k −U2

k

)
∼ N

[(
0
0

)
,

(
6 0
0 2

)]
,

which imply that (V1
k)

2 − (V2
k)

2 is symmetric about 0 and is unimodal.

Hence, by an argument similar to the one used earlier, ‖V1‖2 − ‖V2‖2
=∑d

k=1 [(V1
k)

2 − (V2
k)

2] is symmetrically distributed about 0. Finally, apply-

ing Lemma 5.3.3 to (U1
k)

2 − (U2
k)

2 and
∑d

k=2 [(U1
k)

2 − (U2
k)

2], we see that

‖U1‖2 − ‖U2‖2 ∈ X. The result (5.3.5) follows by applying Lemma 5.3.4 to
‖U1‖2 − ‖U2‖2

and ‖V1‖2 − ‖V2‖2
. ¤

Proposition 5.3.1 leads to the main result of this section.
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Proposition 5.3.5. Suppose that the µµi’s are as in (5.2.1) and the Xij’s are
as in (5.2.2) with W = Ip and B as in (5.3.1) such that bk = 0 for some
k, 1 < k ≤ p. Then,

Γ(k − 1) > Γ(k) > Γ(k + 1) > . . . > Γ(p), (5.3.6)

and

Γ
′
(k − 1) > Γ

′
(k) > Γ

′
(k + 1) > . . . > Γ

′
(p). (5.3.7)

Moreover, if bk = 0 for some k, then Γ(p) ↓ 1/2 and Γ
′
(p) ↓ 1/2 as p →∞.

Proof. If bk = 0 for some k, 1 < k ≤ p, then

µµi =

(
ηηi

νν

)
∀i, where νν is constant vector of length p− k + 1.

Now, if Xij =
(
Xk−1

ij ,Yij

)T
, then

(
Xk−1

ij

Yij

) ∣∣∣∣
(

ηηi

νν

)
∼ Np

[(
ηηi

νν

)
,

(
Ik−1 0
0 Ip−k+1

)]
, (5.3.8)

where Xk−1
ij and Yl

ij are as in 5.3.2. Now, for any l, 1 ≤ l ≤ p − K + 1,

applying Proposition 5.3.1(b) to
(
Xk−1

ij ,Yl
ij

)T |µµi for i, j = 1, 2, we get

P

[∥∥∥∥
(
Xk−1

21

Yl−1
21

)
−

(
Xk−1

11

Yl−1
11

)∥∥∥∥
2

>

∥∥∥∥
(
Xk−1

12

Yl−1
12

)
−

(
Xk−1

11

Yl−1
11

)∥∥∥∥
2
∣∣∣∣∣ µµ1, µµ2

]

>P

[∥∥∥∥
(
Xk−1

21

Yl
21

)
−

(
Xk−1

11

Yl
11

)∥∥∥∥
2

>

∥∥∥∥
(
Xk−1

12

Yl
12

)
−

(
Xk−1

11

Yl
11

)∥∥∥∥
2
∣∣∣∣∣ µµ1, µµ2

]
(5.3.9)

and integrating both side of (5.3.9) with respect to µµ1 and µµ2 we get Γ(k −
1 + l − 1) > Γ(k − 1 + l). This proves 5.3.6. Using similar argument and
applying Proposition 5.3.1(a), (5.3.7) can be proved.
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Lastly, If bk = 0 for some k,

Γ(k − 1 + l) =P

[∥∥∥∥
(
Xk−1

21

Yl
21

)
−

(
Xk−1

11

Yl
11

)∥∥∥∥
2

>

∥∥∥∥
(
Xk−1

12

Yl
12

)
−

(
Xk−1

11

Yl
11

)∥∥∥∥
2
∣∣∣∣∣ µµ1, µµ2

]

=P [U + Vl > 0]
(
where U =

∥∥Xk−1
21 −Xk−1

11

∥∥2 −
∥∥Xk−1

12 −Xk−1
11

∥∥2
,

and Vl =
∥∥Yl

21 −Yl
11

∥∥2 −
∥∥Yl

12 −Yl
11

∥∥2
)

=P

[
U +

l∑
i=1

Wi > 0

]
(where Wi’s are i.i.d. with mean 0)

=P

[
1√
l
U +

1√
l

l∑
i=1

Wi > 0

]
→ 1− Φ(0) = 1/2 (by CLT).

Hence, Γ(p) ↓ 1/2 as p →∞. Using similar argument, it can be shown that
Γ
′
(p) ↓ 1/2 as p →∞. ¤

Thus, inclusion of nondiscriminating variables can only reduce the chance
that the between-cluster is greater than the within-cluster distance. Also, if
we go on including more and more nondiscriminating variables, the chance
may be as bad as 1/2.

5.3.3 Threshold for Inclusion of a Variable

We have seen in the last section that nondiscriminating variables which have
no mean separation across the different clusters (or zero between-clusters
variance), should be dropped. Because of the continuity of the probability
functions Γ(d) and Γ′(d) with respect to between-cluster variance of each
component, it can be concluded that the contribution of a component with
very small between-cluster variance should be small, and therefore such a
component would not be worthy of inclusion. The question is: “how small is
small?”

One may seek to answer this question by trying to include one variable at a
time. This approach leads to another question: “is it possible to reach the
optimal set of variables by including one variable at a time?” The following
counter-example shows that the answer is ‘no’.

Example Suppose that the within cluster dispersion matrix W = I10 and
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the between cluster dispersion matrix B is given by

B10×10 =




10 0 0
0 0.3× I8 0
0 0 0.01


 .

Then, the values of Γ(d) and Γ
′
(d) for d = 1, 2, . . . , 10 are displayed in the

following table.

d Γ(d) Γ
′
(d) d Γ(d) Γ

′
(d)

1 0.8168 0.8116 6 0.8224 0.8117
2 0.8143 0.8096 7 0.8248 0.8137
3 0.8155 0.8088 8 0.8274 0.8155
4 0.8174 0.8094 9 0.8299 0.8176
5 0.8198 0.8103 10 0.8282 0.8145

Table 5.3.1: Probability of the event that the between-cluster Euclidean
distance is greater than the within-cluster one for various subset sizes

So, if we would proceed sequentially, we would choose the first variable only.
But actually, the optimal subset will consist of first 9 variables, as both Γ(.)
and Γ

′
(.) are maximum for d = 9.

The above example shows that we should not include the variables sequen-
tially, as we may not reach the optimal subset of variables in that case.

5.3.4 Procedure for Selecting the Optimal Subset

As we cannot include one variable at a time, we need to compare the probabil-
ities corresponding to the best subset of different subset sizes simultaneously
in order to obtain the optimal subset. The procedure for choosing an op-
timal subset of a given size has already been outlined in Table 5.2.1. We
only need to search for the best d with respect to the chosen criterion. One
possible way to do so is to use simulation to estimate the probabilities Γ(d)
and Γ′(d) for all values of d in a suitable range and choose the smaller of the
two maximizers.

Since
Γ(d) = P

[∥∥Xd
11 −Xd

21

∥∥2
>

∥∥Xd
11 −Xd

12

∥∥2
]
,

and (
Xd

11 −Xd
21

Xd
11 −Xd

12

)
∼ N

[(
0
0

)
,

(
2Bd + 2Id Id

Id 2Id

)]
, (5.3.10)
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where Bd is the leading principal submatrix of B of size d× d, Γ(d) can
be well approximated by the average

Γ̂(d) = n−1

n∑
i=1

1(‖Yi‖2>‖Zi‖2),

where (Yi,Zi)
T are i.i.d. from the normal distribution, mentioned in (5.3.10).

In the same spirit, since

Γ
′
(d) = P

[∥∥Xd
11 −Xd

21

∥∥2
>

∥∥Xd
12 −Xd

13

∥∥2
]
,

and
(
Xd

11 −Xd
21

Xd
12 −Xd

13

)
∼ N

[(
0
0

)
,

(
2Bd + 2Id 0d

0d 2Id

)]
, (5.3.11)

where Bd is as mentioned above, Γ
′
(d) can be well approximated by the

average

Γ̂
′
(d) = n−1

n∑
i=1

1(‖Yi‖2>‖Zi‖2),

where (Yi,Zi)
T are i.i.d. from the normal distribution, mentioned in (5.3.11).

5.4 Selection of Number of variables for Dif-

ferent Linkages

The criterion presented in the foregoing section allows us to select a d that
would result in a probabilistically best segregated distance matrix. It is not
clear however, whether a better segregated distance matrix would necessarily
lead to better clustering for various types of linkage. In this section, we look
for a method of choosing d that seeks to achieve better clustering by methods
based on a particular type of linkage.

We consider the three standard types of linkage, namely single linkage,
average linkage and the complete linkage.

5.4.1 Criterion Function

Suppose that there are two clusters C1 and C2. C1 consists of n1 observa-
tions Y11, Y12, . . . , Y1n1 and C2 consists of n2 observations Y21, Y22, . . . , Y2n2 .
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A new observation, say X from C1 will be associated to the first cluster if
D(X, C1) < D(X, C2), where

D(X, Ci) =





Ds(X, Ci) = min
{‖X−Yij‖2 : 1 ≤ j ≤ ni

}
for single linkage

Da(X, Ci) =
∥∥∥X− n−1

i

∑ni

j=1 Yij

∥∥∥
2

for average linkage

Dc(X, Ci) = max
{‖X−Yij‖2 : 1 ≤ j ≤ ni

}
for complete linkage.

(5.4.1)

Following the argument given in Section 5.3.1, for any linkage, the subset
of variables, for which the probability of the event D(X, C1) < D(X, C2) is
higher, is more amenable for correct clustering using that linkage method.
So we take

Γ(d, n1, n2) =





Γs(d, n1, n2) = P
[
Ds(X

d, C1) < Ds(X
d, C2)

]
for single linkage

Γa(d, n1, n2) = P
[
Da(X

d, C1) < Da(X
d, C2)

]
for average linkage

Γc(d, n1, n2) = P
[
Dc(X

d, C1) < Dc(X
d, C2)

]
for complete linkage,

(5.4.2)

where D(Xd, Ci) is similarly defined as D(X, Ci) considering the first d many
components only. We would like to maximize Γ(d, n1, n2) with respect to d.
However, the maximizer depends on n1 and n2. In order to avoid confusion,
we would make the parsimonous choice of the smallest of all the d’s that
maximize Γ(d, n1, n2) for different pairs of n1 and n2. This choice would
ensure that the variables thus selected would have been included on the
basis of Γ(d, n1, n2) for any n1 and n2. We now present a limited simulation
study in search of ‘worst case’ choices n0

1 and n2
2 such that

arg max
d

Γ(d, n0
1, n

0
2) ≤ arg max

d
Γ(d, n1, n2) ∀ n1, n2. (5.4.3)

5.4.2 Simulation Plan

The simulation study consisted of two stages. In the first stage, we considered
the identity matrix as the within-cluster dispersion matrix and three different
between-cluster dispersion matrices, namely

B1 =




5 0 0 0 0
0 5 0 0 0
0 0 5 0 0
0 0 0 5 0
0 0 0 0 5




,B2 =




10 0 0 0 0
0 10 0 0 0
0 0 10 0 0
0 0 0 10 0
0 0 0 0 .5




,B3 =




10 0 0 0 0
0 .8 0 0 0
0 0 .8 0 0
0 0 0 .8 0
0 0 0 0 .8




.

(5.4.4)
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For each of the three linkage methods and three Bi’s, we considered 9 pairs of
values of n1 and n2. For each combination of the parameters, we tried to ob-
tain one common threshold for the inclusion of 1, 3 or 5 additional variables.
Larger the threshold, smaller is the optimal value of d for a given between-
cluster dispersion matrix. Thus, while choosing n0

1 and n0
2, we would look for

the largest threshold. The results are displayed in the following section.

From this study, we got some indication about n0
1 and n0

2 which will be
reported later. In order to confirm that the pair (n0

1, n
0
2) serves our purpose,

we conducted the second stage of simulations. In this study, for each Bi

we obtain dopt by directly maximizing Γ(d, n0
1, n

0
2), and show that in each

case Γ(d, n1, n2) ≤ Γ(dopt, n1, n2), for all d < dopt for three different pairs of
(n1, n2), namely n1 < n2, n1 = n2 and n1 > n2. This is displayed in the
Figures 5.4.3, 5.4.2 and 5.4.3, respectively.

5.4.3 Results and Discussion

In the following tables, we present the common threshold values for the
inclusion of r many variables in the clustering procedure using the three
standard linkage methods, when the cluster sizes are n1 and n2 respectively
and B is the between-cluster dispersion matrix before including any variable.

Table 5.4.1 shows that if average linkage is used, the threshold is maximum
when n1 is smallest and n2 is largest. Similar phenomenon is observed for
single linkage, as shown in Table 5.4.2. However, in case of complete linkage,
the threshold is maximized when n1 is largest and n2 is smallest, as shown
in Table 5.4.3. This gives an indication that in the case of average linkage
and single linkage, the threshold will maximize if n1 ↓ and n2 ↑ whereas, in
the case of complete linkage the threshold maximizes as n2 ↓ and n2 ↑.
The simulations indicate that for single and average linkages, the worst case
combination may be n0

1 = 1, n0
2 = ∞, while for complete linkage, the worst

case combination may be n0
1 = ∞, n0

2 = 1. In order to verify this, we assumed
n0

1 and n0
2 to be as above and tried to see whether (5.4.3) holds. Figure 5.4.1

shows that for average linkage the condition (5.4.3) seems to hold.
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B Number of Variables to be added
1 3 5

B1

HHHHHn1

n2 1 50 100
HHHHHn1

n2 1 50 100
HHHHHn1

n2 1 50 100

1 .5 1.05 1.15 1 .47 .93 .97 1 .43 .92 0.933
50 .01 .05 .1 50 0 0.005 .03 50 0 .02 .03
100 0 .01 .03 100 0 .005 .02 100 0 .02 .02

B2

HHHHHn1

n2 1 50 100
HHHHHn1

n2 1 50 100
HHHHHn1

n2 1 50 100

1 .5 .5 .5 1 .45 .5 .5 1 .5 .5 .5
50 0 0 0 50 .001 .05 .05 50 0 .003 .003
100 0 0 0 100 0 0 .001 100 0 .003 .003

B3

HHHHHn1

n2 1 50 100
HHHHHn1

n2 1 50 100
HHHHHn1

n2 1 50 100

1 .32 .71 .74 1 0.296 0.696 0.704 1 .27 .69 .69
50 0 .02 .04 50 0 0.024 0.032 50 0 .02 .02
100 0 .001 .001 100 0 0 0.016 100 0 0 .02

Table 5.4.1: Threshold values for different combinations B, n1, n2 and r, the
number of variables to be added, in case of average linkage

B Number of Variables to be added
1 3 5

B1

HHHHHn1

n2 1 50 100
HHHHHn1

n2 1 50 100
HHHHHn1

n2 1 50 100

1 .55 .75 .95 1 .45 .70 .80 1 .2 .70 .75
50 .05 .30 .10 50 .05 .25 .25 50 0 .15 .15
100 0 0 .25 100 0 .10 .25 100 0 .15 .10

B2

HHHHHn1

n2 1 50 100
HHHHHn1

n2 1 50 100
HHHHHn1

n2 1 50 100

1 .21 .50 .63 1 .16 .49 .56 1 .02 .49 .54
50 0 .05 .06 50 0 .005 .01 50 0 .005 .005
100 0 .005 .07 100 0 .005 .02 100 0 0 .005

B3

HHHHHn1

n2 1 50 100
HHHHHn1

n2 1 50 100
HHHHHn1

n2 1 50 100

1 .26 .33 .46 1 .15 .32 .35 1 .06 .28 .32
50 .008 .07 .09 50 .008 .03 .08 50 .008 .04 .08
100 0 .008 .024 100 0 0 .008 100 0 .008 .01

Table 5.4.2: Threshold values for different combinations B, n1, n2 and r, the
number of variables to be added, in case of single linkage
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B Number of Variables to be added
1 3 5

B1

HHHHHn1

n2 1 50 100
HHHHHn1

n2 1 50 100
HHHHHn1

n2 1 50 100

1 .25 .1 .05 1 .2 .1 0 1 .15 .05 0
50 .551 .2 .05 50 .45 .2 .005 50 .25 .05 .005
100 .65 .2 .1 100 .5 .25 .025 100 .5 .2 .2

B2

HHHHHn1

n2 1 50 100
HHHHHn1

n2 1 50 100
HHHHHn1

n2 1 50 100

1 .05 .005 0 1 .045 0 0 1 .02 0 0
50 .33 .15 .005 50 .05 .05 0 50 .05 .025 0
100 .39 .15 .02 100 .35 .02 .005 100 .1 .02 0

B3

HHHHHn1

n2 1 50 100
HHHHHn1

n2 1 50 100
HHHHHn1

n2 1 50 100

1 .16 .016 .005 1 .07 .01 0.005 1 .04 .005 0
50 .34 .02 0 50 .18 .02 .008 50 .09 .02 .005
100 .37 .164 .032 100 .29 .14 .02 100 .11 .05 .002

Table 5.4.3: Threshold values for different combinations B, n1, n2 and r, the
number of variables to be added, in case of complete linkage
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Figure 5.4.1: Plot of Γa(d, n1, n2) against dimension d. The columns of the
subplots correspond to the cases (n1, n2) = (1, 1), (1, 50), (50, 1) respectively,
whereas the rows correspond to B1,B2,B3, respectively.
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Figure 5.4.2: Plot of Γs(d, n1, n2) against dimension d. The columns of the
subplots correspond to the cases (n1, n2) = (1, 1), (1, 50), (50, 1) respectively,
whereas the rows correspond to B1,B2,B3, respectively.
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Figure 5.4.3: Plot of Γc(d, n1, n2) against dimension d. The columns of the
subplots correspond to the cases (n1, n2) = (1, 1), (1, 50), (50, 1) respectively,
whereas the rows correspond to B1,B2,B3, respectively.

82



5.5 Conclusion

From the simulation study, it seems that the conservative choice of n1 and n2

for the three linkage methods are as given in Table 5.5.1. If these conjectures
hold, we need to consider only the pair (n0

1, n
0
2) and maximize Γ(d, n0

1, n
0
2)

with respect to d, as the corresponding dopt would be a conservative choice
for any other (n1, n2). Simulation plan for maximizing Γ(d, n0

1, n
0
2) would

be much simpler than searching over all n1 and n2 and the corresponding
optimal d.

Linkage n0
1 n0

2

Single 1 ∞
Average 1 ∞
Complete ∞ 1

Table 5.5.1: Conservative choice of n1 and n2 for different types of linkage
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Chapter 6

Clustering with or without
Training Data

In Chapter 5, we had assumed both W and B to be known and discussed the
ill effects of nondiscriminating variables in clustering. When these matrices
are unknown, their estimation itself may become a difficult task because of
high dimensionality. In this chapter, we discuss these aspects of clustering.

In usual clustering problems, we do not have any knowledge ofW and B
separately. So the techniques for known W and B cannot be applied. We
can only hope that B is sufficiently ‘larger’ than W in some sense so that
the correct clusters would be recognizable from the data at hand. We for-
malize this notion in the next section, and examine conditions under which
reasonable clustering would indeed be possible.

In some cases, clustering of the main data set (‘test’ data) is preceded by
analysis of a typically smaller data set where the cluster memberships are
known (‘training data’). We can estimate W and B from the training data,
but because of high dimensionality or shortage of data, the estimates may
not be reliable. If these estimates are substituted in place of W and B, the
resulting ‘best’ linear combinations may differ from the optimal ones substan-
tially. We discuss some regularization techniques to overcome this difficulty,
and examine their effectiveness through simulation.

6.1 Clustering with No Training Data

In this case, we don’t have any prior knowledge of the between-cluster (B)
and within-cluster (W) variance-covariance matrices. So, we cannot esti-

mate the eigenvectors of W− 1
2BW− 1

2 corresponding to its largest eigenval-
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ues, which give the optimal linear combinations according to our criterion.
However, we can estimate the total dispersion matrix W + B. We may
choose the eigenvectors of the estimate of W + B corresponding to its largest
eigenvalues, as the discriminating directions. In this section, we study the
performance of these linear combinations in terms of our criterion. For the
time, being we study the performance of these eigenvectors, disregarding the
fact that the latter matrix is estimated from the data. We denote by L1 the
semi-orthogonal p× d matrix whose columns are the eigenvectors of W + B
corresponding to its largest d many eigenvalues.

The eigenvectors of W + B are expected to perform well, intuitively, if in
some directions the between-cluster variance is very high compared to the of
within-cluster variance. For example, if the larger eigenvalues of B are very
high compared to those of W, the eigenvectors of W + B corresponding to
its large eigenvalues are quite likely to be close to the optimal directions, and
hence have high discriminating power. To study the performance of L1, we
consider the following norm on n.n.d. matrices.

‖A‖d = sum of d largest eigenvalues of A.

That ‖.‖d is a norm follows from the fact that by Corollary 5.2.3,

‖A‖d = max
{Lp×d:LT L=Id}

trace(LTAL) = max
L∈L

trace
[
(LTAL)(LTL)−1

]
,

(6.1.1)

where L = {L : L is p×d}, as defined in (5.2.3). This norm has an important
property, namely

Lemma 6.1.1. ∥∥∥A
1
2BA

1
2

∥∥∥
d
≤ ‖A‖d‖B‖d.

Proof. We observe that
∥∥∥A

1
2BA

1
2

∥∥∥
d

= max
L∈L

trace
[(

LTA
1
2BA

1
2L

) (
LTL

)−1
]

= max
L∈L

trace
[(

LTA
1
2BA

1
2L

) (
LTAL

)−1 (
LTAL

) (
LTL

)−1
]

≤max
L∈L

trace
[(

LTA
1
2BA

1
2L

) (
LTAL

)−1
]

×max
L∈L

trace
[(

LTAL
) (

LTL
)−1

]

= max
M∈L

trace
[(

MTBM
) (

MTM
)−1

]
‖A‖d (putting A

1
2L = M)

=‖A‖d‖B‖d (6.1.2)
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Hence, the inequality holds. ¤

Next, we obtain a lower bound for Ψ(L1), where Ψ(·) is the criterion function
defined in (5.2.5).

Proposition 6.1.2.

Ψ(L1) ≥ ‖W + B‖d

‖W‖d

− d

Proof. By the choice of L1,

LT
1 (W + B)L1 = Diag(λ1, . . . , λd) = D say,

where λ1, . . . , λd are the d largest eigenvalues of W + B. So,

Ψ(L1) + d = trace
[(

LT
1 BL1

) (
LT

1 WL1

)−1
]

+ d

= trace
[
LT

1 (W + B)L1

(
LT

1 WL1

)−1
]

= trace
[
D

(
LT

1 WL1

)−1
]

=
d∑

i=1

λi

(
LT

1 WL1

)ii

≥
d∑

i=1

λi

(LT
1 WL1)ii

≥
∑d

i=1 λi∑d
i=1 (LT

1 WL1)ii

=
‖W + B‖d

trace(LT
1 WL1)

≥‖W + B‖d

‖W‖d

(as LT
1 L1 = Id). (6.1.3)

Hence the inequality is established. ¤

Using Lemma 6.1.1 and Proposition 5.2.1, we can compare the performance
of L1 with that of the optimal linear combinations L0 that maximizes Ψ(·).
Proposition 6.1.3. If L0 maximizes Ψ(·), then

1 ≥ Ψ(L1) + d

Ψ(L0) + d
≥ 1

‖W‖d‖W−1‖d

.
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Proof. As L0 maximizes Ψ(·),

Ψ(L0) + d = max
L∈L

trace
[(

LTBL
) (

LTWL
)−1

]
+ d

= max
L∈L

trace
[
LT (W + B)L

(
LTWL

)−1
]

=
∥∥∥W− 1

2 (W + B)W− 1
2

∥∥∥
d

≤
∥∥W−1

∥∥
d
‖W + B‖d (using lemma 6.1.1). (6.1.4)

Combining this result with that of proposition 6.1.2, we get

Ψ(L0) + d ≥ Ψ(L1) + d ≥ ‖W + B‖d

‖W‖d

≥ Ψ(L0) + d

‖W‖d‖W−1‖d

.

Thus, the inequality is established. ¤

The above lower bound is attainable. For example, if B and W are both
diagonal, say B = Diag(λ1, . . . , λp) and W = Diag(ν1, . . . , νp), with λ1 =
λ2 > λ3 = · · · = λp and ν1 > ν2 = · · · = νp. If we consider the case d = 1,
Ψ(·) is maximized at L0 = (0, 1, 0, . . . , 0)T . However, if we use W + B, the
largest eigenvector is L1 = (1, 0, . . . , 0)T . So,

Ψ(L1) + 1

Ψ(L0) + 1
=

λ1/ν1

λ2/ν2

=
ν2

ν1

=
λmin(W)

λmax(W)
=

1

‖W‖1‖W−1‖1

.

The upper bound is also sharp, as one can easily verify by considering B =
Diag(λ1, . . . , λp), W = Diag(ν1, . . . , νp), with λ1 > λ2 = · · · = λp, ν1 > ν2 =
· · · = νp and λ1/ν1 > λ2/ν2 = · · · = λp/νp.

The lower bound depends on the eigenvalues of W. If the eigenvalues have
very high ratios among them, the lower bound can be very small. For d = 1,
the lower bound is nothing but λmin(W)

λmax(W)
, the inverse of the condition number

of W, which can sometimes be very small.

However, if the large eigenvalues of B are very high compared to those of
W, i.e. ‖B‖d À ‖W‖d, then from proposition 6.1.2, it follows that

Ψ(L1) + d ≥ ‖W + B‖d

‖W‖d

≥ ‖B‖d

‖W‖d

À 1.

Thus, the eigenvectors of W + B can perform reasonably well.

In the following subsection, we have a practical example, where the eigen-
vectors of W + B work very well as discriminating directions.
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6.2 An Example: Clustering of DNA Sequences

6.2.1 Data Description

The data which we considered consists of tetra-nucleotide frequencies derived
from 16S and 18S ribosomal DNA sequences from 24 organisms (6 bacteria,
6 archaea, 6 fungi and 6 gymnosperm plants - 16S for bacteria and archaea
while 18S for fungi and gymnosperms). For each organism, there are 256
variables, each variable being the percentage of occurrence of a particular
tetra-nucleotide in a ribosomal DNA sequence. Tetra-nucleotides are 4-tuples
formed by characters A, T, C and G, – hence there are 256 of them.

6.2.2 Methodology Used

One expects that 16S and 18S ribosomal DNA sequences carry some signa-
tures of the species, and these can be reflected in the tetra-nucleotide fre-
quencies. So one hopes that clustering based on these variables or variables
derived from them may lead to groups that are biologically homogeneous.

Since sum of all the variables is 100, the first 255 variables were considered
for clustering. So, in this case p = 255 and N = 24. The sample dispersion
matrix S for all the observations was obtained and its principal components
were considered. For different values of d, the leading d many principal com-
ponents of S were used to transform the data to a d-dimensional observation.
Then average linkage clustering was used to find the groups.

In the Table 6.2.1, we display the clusters obtained d many leading principal
components, for d = 1, 3, 5.In that matrix, M represents the heterogeneity

matrix, namely Mij is the number o f common elements in the true ith group

and the jth cluster obtained using average linkage clustering method.

6.2.3 Results and Discussion

This is a high dimensional clustering problem, as p = 255 is very large com-
pared to N = 24. If we use two leading principal components of the sample
dispersion matrix as the discriminating directions, the resulting clusters are
quite close to what is expected from the biological point of view. However,
if the number of linear combinations are increased, the performance become
worse. Table 6.2.1 shows that the clusters which we obtain by using 5 linear
combinations, differ from the true one considerably. This shows that if the
number of linear combinations is increased, it may not always improve the
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clustering.

d Cluster1 Cluster2 Cluster3 Cluster4 M
1 2 4 5 15 13 14 4 1 1 0
3 6 17 19 16 18 6 0 0 0

1 7 8 20 21 0 0 2 4
9 10 22 23 0 0 6 0
11 12 24

1 2 6 7 13 14 15 17 5 1 0 0
2 3 4 8 9 16 18 19 20 0 6 0 0

5 10 11 21 22 0 0 4 2
12 23 24 0 0 0 6

1 2 4 5 7 8 13 14 4 2 0 0
5 3 6 9 10 15 16 0 0 6 0

11 12 17 18 0 0 0 6
19 20 0 0 0 6
21 22
23 24

Table 6.2.1: Results of clustering using d many principal components. Here
M is the heterogeneity matrix.
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6.3 Clustering with Training Data

In this case, we can get estimates of B and W, say B̂ and Ŵ, respectively,
using training samples. Given d (the number of linear combinations to be
chosen), we can maximize trace[(LT B̂L) (LTŴL)−1] with respect to L ∈ L,
in order to estimate the true optimizer of our criteria function. However, if
the dimension p of the observations is very high compared to the number
of observations, the estimates of B and W become poor and unstable. The
linear combinations obtained by using these unreliable estimates, are often
substantially different from the optimal linear combinations. In this situa-
tion, regularization techniques may be quite helpful in reducing the instabil-
ity of the estimates and hence improve the performance of the corresponding
linear combinations. In this study, we have considered three regularization
techniques. These are discussed in the next subsections.

6.3.1 Low Rank Approximation

Generally, when dimension of the observations is very high in relation to
the sample size, the small eigenvalues of the covariance matrix are under-
estimated. Consrquently, the associated eigenvectors are estimated with a
very high variance. In the present problem, eigenvectors of W corresponding
to its small eigenvalues are poorly estimated. This may cause the resulting
linear combinations of variables to perform poorly.

One possible way to cope with this problem is to consider a low rank approx-
imation of Ŵ. In this regularization, small eigenvalues of Ŵ are set to 0,
and the search for the optimal L is restricted to the eigenspace of Ŵ corre-
sponding to its nonzero eigenvalues. Thus, we can neutralize the effect of the
poorly estimated and unstable eigenvectors of W, at the cost of confining
to a smaller subspace of Rp. So, this regularization is expected to perform
well, if sufficient separation is present even in the smaller subspace, corre-
sponding to the large eigenvalues of W. To be more precise, let us consider
the spectral decomposition of Ŵ, Ŵ = PΛPT , where Λ =Diag(λ1, . . . , λp)
with λ1 ≥ λ2 ≥ . . . ≥ λp. Suppose that Λ1 =Diag(λ1, . . . , λk) contains the
large eigenvalues and Λ2 =Diag(λk+1, . . . , λp) contains the small eigenvalues

of Ŵ. So, we can write

Ŵ = P1Λ1P
T
1 + P2Λ2P

T
2 = Ŵ1 + Ŵ2.

In low rank approximation, we ignore the second term and maximize the
trace of [(LT B̂L)(LTŴ1L)−1] instead of the trace of [(LT B̂L)(LTŴL)−1]
with respect to L, C(L) ⊆ C(Ŵ1). Now, if C(L) ⊆ C(Ŵ1), then LTŴL =
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LTŴ1L. So, in low rank approximation, we maximize the same quan-
tity, trace of [(LT B̂L)(LTŴL)−1], but in a lower dimensional space, namely
within C(Ŵ1), which leads to more reliable estimate of the corresponding
population analogue. So, the strategy would work well if

max
L : C(L)⊆C(W1)

trace
[(

LTBL
) (

LTWL
)−1

]

is large.

6.3.2 Shrinkage Towards Diagonal Matrix

Instead of using a low rank approximation, we can regularize Ŵ by shrinking
it towards D̂ =Diag(Ŵ), i.e. a diagonal matrix having the same diagonal
entries as of Ŵ. To be more precise, we consider a convex combination of
Ŵ and D̂, namely

Ŵ(λ) = (1− λ)Ŵ + λD̂,

and maximize the trace of [(LT B̂L)(LTŴ(λ)L)−1] with respect to L in order
to estimate the best discriminating directions. Due to high dimensionality, if
the estimate Ŵ becomes unstable, shrinkage towards diagonal matrix using
small λ is expected to improve the estimate by reducing the eigenvalue distor-
tion and thereby help to obtain better discriminating directions. In practice,
the shrinkage parameter λ can be estimated by considering a grid of [0, 1]

and choosing the grid point for which maxL trace
[
(LTBL)(LTŴ(λ)L)−1

]

is maximum.

6.3.3 Regularizing Moore-Penrose G-Inverse of Ŵ

In order to maximize trace of (LT B̂L)(LTŴL)−1 with respect to L, C(L) ⊆
C(Ŵ), we need to consider the eigenvector of Ŵ− 1

2BŴ
− 1

2 where Ŵ− 1
2 is

the square root of Ŵ+ (the Moore-Penrose g-inverse of Ŵ), corresponding
to its largest eigenvalue and transform it suitably. Since the contribution
of Ŵ is through Ŵ+, regularizing Ŵ+ itself instead of Ŵ may improve
the performance of the resulting linear combinations. On the basis of this
intuitive reasoning, we considered the regularization of Ŵ+. We take a
convex combination of Ŵ+ and D̂∗ =Diag(Ŵ+) and then use it in place of
Ŵ+ to get the optimal linear combinations. So, the regularization is given
by

Ŵ∗(λ) =
[
(1− λ)Ŵ+ + λD̂∗

]+

.
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This regularization is expected to improve Ŵ+, by reducing its instability
due to high dimension and thus improve the resulting linear combinations. As
in the previous case, we consider a grid of [0, 1] and estimate the shrinkage

parameter by the grid point for which max
L

trace
[
(LT B̂L)(LTŴL)−1

]
is

maximum.

6.4 Simulation Study

In order to compare the regularization methods, we considered a 50-dimensional
Gaussian population consisting of 5 clusters, each containing 10 observations.
Three different choices of W and B were considered in the following three ex-
amples. We obtained Ŵ from the simulated data and regularized it using all
the three regularization methods, discussed above. For each of the regular-

ized Ŵ, we obtained the maximizer of
[
(LT B̂L)(LTŴL)−1

]
and evaluated

its performance by calculating
[
(LTBL)(LTWL)−1

]
for each of them.

In the figures, we have plotted the performance of the optimizing linear com-
binations for different extents of regularization.

• The blue line represents low rank approximation. It is plotted against the
rank of Ŵ, which decreases as we move from left to right.
• The red line represents the performance of “shrinkage towards diagonal
matrix”, and it is plotted against λ, the shrinkage parameter. As we move
from left to right, we go away from Ŵ towards its diagonal.
• The black line represents the performance of “regularization of Ŵ+”. This
is also plotted against the shrinkage parameter λ. As we move from left to
right, we go away from Ŵ.
All three graphs are plotted in the same vertical scale to facilitate compari-
son. Horizontal scales are not comparable.
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6.4.1 Results of Simulation Study

Example 1 In the first example, the within-cluster variation matrix W was
chosen to have very high ratio of the large and low eigenvalues. The small
eigenvalues were of the order 10−3, whereas the large eigenvalues were of the
order 102. More precisely, the eigenvalues were 1 × 10−3, 2 × 10−3, . . . , 25 ×
10−3, 1×102, 2×102, . . . , 25×102. So, the condition number of W was 25×105.
The eigenvectors were chosen randomly. The between-cluster matrix B was
chosen to be a diagonal matrix, with all the diagonal entries, except the last
five, as 10−3. The last five diagonal entries were chosen to be 104, to make
sure that only the last five components have enough discriminating power.

The performance of different regularization methods are displayed in the
following figure.
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Figure 6.4.1: Performance of various regularization methods for Example 1
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Example 2 In the second example, the within-cluster variation ma-
trix W was chosen to have moderately high ratio among the large and low
eigenvalues. The small eigenvalues were of the order 10−3, whereas the large
eigenvalues were between 1 and 25. More precisely, the eigenvalues were
1×10−3, 2×10−3, . . . , 25×10−3, 1, 2, . . . , 25. So, the condition number of W
was 25× 103. The eigenvectors were chosen randomly. The between-cluster
matrix B was chosen to be a diagonal matrix, with all the diagonal entries,
except the last five, as 10−3. The last five diagonal entries were chosen to be
102 to make sure that only the last five components have enough discrimi-
nating power.

The performance of different regularization methods are displayed in the
following figure.
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Figure 6.4.2: Performance of various regularization methods for Example 2
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Example 3 In the third example, the within-cluster variation matrix
W was chosen to have low ratio among the large and low eigenvalues. The
eigenvalues were 1, 2, . . . , 50. So, the condition number of W was 50. The
eigenvectors were chosen randomly. The between-cluster matrix B was cho-
sen to be a diagonal matrix, with all the diagonal entries, except the last
five, as 10−3. The last five diagonal entries were chosen to be 104, to make
sure that only the last five components have enough discriminating power.

The performance of different regularization methods are displayed in the
following figure.
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Figure 6.4.3: Performance of various regularization methods for Example 3

Example 4 In the fourth example, W and B were taken as in Example
3. However, instead of 10 observations, 20 observations were taken for each
cluster. The performance of different regularization methods are displayed
in the following figure.
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Figure 6.4.4: Performance of various regularization methods for Example 4

6.4.2 Discussion

We observe that when the within-cluster matrix W has very small eigenval-
ues, i.e., the condition number is very high, low rank approximation helps a
lot to cope with the high dimensionality. In this situation, due to shortage
of data, the eigenvectors of W corresponding to its small eigenvalues are
very poorly estimated. Low rank approximation nullifies the contribution
of such unstable estimates. So, in such a situation, low rank approximation
is a good option. The maximizer of the trace of the ratio matrix, within
the smaller subspace performs better. When the condition number is not
very high, regularization of Ŵ by shrinking it towards its diagonal version
using a small shrinkage parameter, may improve the performance consider-
ably. Shrinkage of Ŵ towards its own diagonal version (again, with a small
shrinkage parameter) also works well when the condition number is small.
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6.5 An Example: Clustering of Tiger Pug-

marks

6.5.1 Data Description

The problem is to estimate the number of tigers in a geographical area based
on the pug-mark information collected during tiger census. Some training
data are available. There are 37 features altogether. This is a high dimen-
sional clustering problem as the dimension of the observations is comparable
to the training sample size. In the training data, information about 33 tiger
trails with one or more replications were available. Among them only 20 trails
were known to correspond to distinct tigers. The total number of pugmarks
from the 33 trails was 76.

6.5.2 Methodology Used

Initial analysis showed that 15 out of the 33 original variables either exhibit
model heterogeneity or do not contain significant information to distinguish
different tigers. So, we concentrated on the remaining 22 variables. The
estimate B̂ was obtained by using the information on 20 different trails cor-
responding to distinct tigers, while Ŵ was obtained by using information of
all the 33 trails (some of which may correspond to the same tiger).

Ŵ was observed to have a number of eigenvalues of the order 10−5, whereas
the maximum eigenvalue was .09. Moreover, the eigenvalues of the ratio ma-
trix R̂ = Ŵ−1/2B̂Ŵ−1/2 turned out to be widely spread. Eleven of them
were less than 1/10 and three of them were of the order 10−11. On the other
hand, the maximum eigenvalue was 1256.2. Also, in the eigenvector of R̂ cor-
responding to its largest eigenvalue, as many as 8 elements are positive while
the remaining 14 are negative. Since almost all the variables are physical
dimensions, these are positively correlated. In such a situation, one would
expect the elements of the said eigenvector to be mostly positive, as coeffi-
cients of the leading principal component must have the same sign whenever
all elements of the dispersion matrix is positive.[1] All these observations
about Ŵ indicate a case of severe ill-conditioning. To cope with the prob-
lem of high dimensionality, low rank approximation of Ŵ was considered.
In this regularization, we replaced the 11 smallest eigenvalues by 0 and re-
stricted our search for the optimal linear combinations within the eigenspace
of Ŵ corresponding to its 11 largest eigenvalues.
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6.5.3 Results and Discussion

For given d, 1 ≤ d ≤ 11, the optimal d many linear combinations according
to the Ψ(·) criteria is given by the d many orthogonal eigenvectors of R̂∗ cor-

responding to it s leading d many eigenvalues, where R̂∗ = Ŵ
−1/2
∗ B̂Ŵ

−1/2
∗

and Ŵ
−1/2
∗ is the modified Ŵ−1/2. In order to obtain the optimal number of

linear combinations, we followed the conservative approach for average link-
age. The probabilities Γa(d, 1,∞) for various d’s are shown in the following
table.

d Γa(d, 1,∞)
1 0.9714
2 0.9916
3 0.9958
4 0.9974
5 0.9981
6 0.9984
7 0.9986
8 0.9988
9 0.9987
10 0.9986
11 0.9985

Table 6.5.1: Performance of the optimal subsets of variables of different sub-
set sizes

So, d = 8 maximizes Γa(d, 1,∞). Hence, the optimal set of linear combina-
tions will be the first 8 orthogonal eigenvectors of R̂∗ corresponding to its
leading 8 largest eigenvalues. The resulting clusters are displayed in Table
6.5.2. Here each “English letter” with several suffixes represent observations
coming from the same cluster and different “English letters” correspond ob-
servations from different clusters.

{a1} {b1} {c1} {d1} {e3}
{e1, e2, e4, e5, h1} {f1, g1, g2} {f2, r1} {f3, f4} {i1}
{j1} {k1} {l1} {m1} {n1}
{o1, o2} {o3, t1, t2, t3, t4, t5} {p1, p2, p3, q1} {q2} {s1}

Table 6.5.2: Clusters of the training data using 8 optimal linear combinations
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